分析 (Ⅰ)根据频率分布直方图的各小长方形的面积之和为1,求出分数在[120,130)内的频率;
(Ⅱ)计算出[110,120)与[120,130)分数段的人数,用分层抽样的方法在各分数段内抽取的人数组成样本,求出“从样本中任取2人,至多有1人在分数段[120,130)内”概率即可.
解答 解:(Ⅰ)[120,130)内的频率为:
1-(0.1+0.15+0.15+0.25+0.05)=1-0.7=0.3;…(5分)
(Ⅱ)由题意,[110,120)分数段的人数为60×0.15=9(人).
[120,130)分数段的人数为60×0.3=18(人). …(7分)
∵用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,
∴需在[110,120)分数段内抽取2人,并分别记为m、n; …(8分)
在[120,130)分数段内抽取4人,并分别记为a、b、c、d; …(9分)
设“从样本中任取2人,至多有1人在分数段[120,130)内”为事件A,
则基本事件共有(m,n),(m,a),…,(m,d),(n,a),…,(n,d),(a,b),…,(c,d)共15种.…(10分)
则事件A包含的基本事件有(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),(n,b),(n,c),(n,d)共9种. …(11分)
∴$P(A)=\frac{9}{15}=\frac{3}{5}$.…(12分)
点评 本题考查了频率分布直方图的应用以及分层抽样和古典概型的计算问题,解题时应用列举法求出基本事件的个数,从而求出概率问题,是综合题.
科目:高中数学 来源: 题型:选择题
| A. | ac>bc | B. | bc>c | C. | a|c|>b|c| | D. | $\frac{a}{c}$>$\frac{b}{c}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{58}{243}$ | B. | $\frac{37}{102}$ | C. | $\frac{7}{27}$ | D. | $\frac{20}{81}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(\sqrt{3},1)$ | B. | (1,$\sqrt{3}$) | C. | (-1,$\sqrt{3}$) | D. | (1,-$\sqrt{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com