18£®ÒÑÖª¼«×ø±êϵµÄ¼«µãÓëÆ½ÃæÖ±½Ç×ø±êϵµÄÔ­µãÖØºÏ£¬¼«ÖáÓëxÖáÕý°ëÖáÖØºÏ£¬ÇÒ³¤¶Èµ¥Î»Ïàͬ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=t-1}\\{y=t+1}\end{array}}$£¨tΪ²ÎÊý£©£¬Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{2}sin£¨¦È-\frac{¦Ð}{4}£©$£®
£¨1£©°ÑÔ²·½³Ì»¯³ÉÔ²µÄ±ê×¼·½³Ì²¢ÇóÔ²Ðĵļ«×ø±ê£»
£¨2£©ÉèÖ±ÏßlÓëÔ²CÏཻÓÚM£¬NÁ½µã£¬Çó¡÷MONµÄÃæ»ý£¨OÎª×ø±êÔ­µã£©£®

·ÖÎö £¨1£©ÀûÓÃÁ½½Ç²îµÄÕýÏÒ¹«Ê½»¯¼ò$¦Ñ=2\sqrt{2}sin£¨¦È-\frac{¦Ð}{4}£©$£¬Çó³öÔ²CµÄ±ê×¼·½³ÌºÍÔ²ÐÄÖ±½Ç×ø±ê£¬ÔÙÇó³öÔ²Ðĵļ«×ø±ê£»
£¨2£©½«$\left\{{\begin{array}{l}{x=t-1}\\{y=t+1}\end{array}}\right.$´úÈëÔ²µÄ±ê×¼·½³ÌÇó³ötµÄÖµ£¬¿ÉµÃÖ±ÏßlÓëÔ²CÏཻµãM£¬NµÄ×ø±ê£¬ÓÉÁ½µãÖ®¼äµÄ¾àÀ빫ʽÇó³ö|MN|£¬Çó³öÖ±ÏßlµÄÆÕͨ·½³Ì£¬Óɵ㵽ֱÏߵľàÀ빫ʽÇó³öÔ­µãµ½Ö±ÏßlµÄ¾àÀ룬ÔÙÇó³ö¡÷MONµÄÃæ»ý£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâµÃ$¦Ñ=2\sqrt{2}sin£¨¦È-\frac{¦Ð}{4}£©$=2sin¦È-2cos¦È£¬
¡à¦Ñ2=2¦Ñsin¦È-2¦Ñcos¦È£¬ÔòÆÕͨ·½³ÌΪ£º£¨x+1£©2+£¨y-1£©2=2£¬
ÔòÔ²ÐÄ×ø±êÊÇ£¨-1£¬1£©£¬
¡àÔ²Ðĵļ«×ø±êΪ$£¨\sqrt{2}£¬\frac{3¦Ð}{4}£©$£»£¨5·Ö£©
£¨2£©½«$\left\{{\begin{array}{l}{x=t-1}\\{y=t+1}\end{array}}\right.$´úÈ루x+1£©2+£¨y-1£©2=2£¬µÃt=¡À1£¬
ËùÒÔÖ±ÏßlÓëÔ²CµÄ½»µãM£¨0£¬2£©¡¢N£¨-2£¬0£©£¬
Ôò|MN|=$\sqrt{£¨0+2£©^{2}+£¨2-0£©^{2}}$=$2\sqrt{2}$£¬
ÓÉ$\left\{{\begin{array}{l}{x=t-1}\\{y=t+1}\end{array}}\right.$µÃ£¬Ö±ÏßlµÄ·½³ÌΪx-y+2=0£¬
ËùÒÔÔ­µãµ½Ö±ÏßlµÄ¾àÀëΪ$\frac{|0-0+2|}{\sqrt{2}}$=$\sqrt{2}$£¬
ËùÒÔ¡÷MONµÄÃæ»ýS=$\frac{1}{2}¡Á2\sqrt{2}¡Á\sqrt{2}$=2          £¨10·Ö£©

µãÆÀ ±¾Ì⿼²é¼«×ø±ê·½³Ì¡¢²ÎÊý·½³ÌÓëÆÕͨ·½³ÌÖ®¼äµÄת»¯£¬Á½½Ç²îµÄÕýÏÒ¹«Ê½£¬Á½µãÖ®¼ä¡¢µãµ½Ö±ÏߵľàÀ빫ʽµÈ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬ÒÑÖªA£¬B£¬C£¬DËĵ㲻¹²Ã棬ÇÒAB¡ÎÆ½Ãæ¦Á£¬CD¡ÎÆ½Ãæ¦Á£¬AC¡É¦Á=E£¬AD¡É¦Á=F£¬BD¡É¦Á=H£¬BC¡É¦Á=G£¬ÇóÖ¤£ºEFHGÊÇÒ»¸öƽÐÐËıßÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Éèa£¼0½Ç¦ÁµÄÖձ߾­¹ýµãP£¨-3a£¬4a£©ÄÇôsin¦Á+2cos¦Á=$\frac{2}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÎªÁ˵õ½º¯Êý$y=sin2x-\sqrt{3}cos2x$µÄͼÏ󣬿ÉÒÔ½«º¯Êýy=4sinxcosxµÄͼÏ󣨡¡¡¡£©
A£®ÏòÓÒÆ½ÒÆ$\frac{¦Ð}{12}$¸öµ¥Î»B£®Ïò×óÆ½ÒÆ$\frac{¦Ð}{12}$¸öµ¥Î»
C£®ÏòÓÒÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»D£®Ïò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªp£ºx2+mx+1=0ÓÐÁ½¸ö²»ÏàµÈµÄ¸ºÊµÊý¸ù£¬q£º·½³Ì4x2+£¨4m-2£©x+1=0ÎÞʵÊý¸ù£®
£¨¢ñ£©ÈôpÎªÕæ£¬ÇóʵÊýmµÄȡֵ·¶Î§£»
£¨¢ò£©ÈôpΪ¼ÙqÎªÕæ£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Ä³Ð£´Ó²Î¼Ó2015Äê¸ß¿¼µÄѧÉúÖÐËæ»ú³éÈ¡60ÃûѧÉú£¬½«ÆäÊýѧ³É¼¨£¨¾ùΪÕûÊý£©·Ö³ÉÁù×é[90£¬100£©£¬[100£¬110£©£¬¡­£¬[140£¬150]ºóµÃµ½²¿·ÖƵÂÊ·Ö²¼Ö±·½Í¼£¨ÈçͼËùʾ£©£®¹Û²ìͼÖÐÊý¾Ý£¬»Ø´ðÏÂÁÐÎÊÌ⣮
£¨¢ñ£©Çó·ÖÊýÔÚ[120£¬130£©Ä򵀮µÂÊ£»
£¨¢ò£©Ó÷ֲã³éÑùµÄ·½·¨ÔÚ·ÖÊý¶ÎΪ[110£¬130£©µÄѧÉúÖгéȡһ¸öÈÝÁ¿Îª6µÄÑù±¾£¬½«¸ÃÑù±¾¿´³ÉÒ»¸ö×ÜÌ壬´ÓÖÐÈÎÈ¡2ÈË£¬ÇóÖÁ¶àÓÐ1ÈËÔÚ·ÖÊý¶Î[120£¬130£©ÄڵĸÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Èôcos¦Á=$\frac{4}{5}$£¬Ôòcos2¦Á=£¨¡¡¡¡£©
A£®$\frac{7}{25}$B£®-$\frac{7}{25}$C£®$\frac{3}{5}$D£®-$\frac{3}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®²»ÂÛmΪºÎÖµ£¬Ö±Ïßl£ºmx+y-2+m=0ºã¹ý¶¨µã£¬Ôò¶¨µã×ø±êΪ£¨¡¡¡¡£©
A£®£¨-1£¬0£©B£®£¨-1£¬-2£©C£®£¨-1£¬2£©D£®£¨1£¬-2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Èôf£¨x£©ÔÚRÉϿɵ¼£¬f£¨x£©=x2+2f¡ä£¨2£©x+3£¬Ôò${¡Ò}_{0}^{3}$f£¨x£©dx=£¨¡¡¡¡£©
A£®16B£®54C£®-24D£®-18

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸