精英家教网 > 高中数学 > 题目详情
9.设a<0角α的终边经过点P(-3a,4a)那么sinα+2cosα=$\frac{2}{5}$.

分析 由条件利用任意角的三角函数的定义,求得sinα和cosα的值,可得sinα+2cosα的值.

解答 解:由于a<0,角α的终边经过点P(-3a,4a),则x=-3a,y=4a,r=|OP|=-5a,
∴sinα=$\frac{y}{r}$=-$\frac{4}{5}$,cosα=$\frac{x}{r}$=$\frac{3}{5}$,∴sinα+2cosα=-$\frac{4}{5}$+$\frac{6}{5}$=$\frac{2}{5}$,
故答案为:$\frac{2}{5}$.

点评 本题主要考查任意角的三角函数的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.在周长为16的△PMN中,MN=6,则$\overrightarrow{PM}$•$\overrightarrow{PN}$的取值范围是(  )
A.[7,16)B.(7,16]C.[7,16]D.(7,16)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知实数m∈(0,3],函数f(x)=x2+ax+b+$\frac{c-b}{x+1}$,且1、2、3为函数y=f(x)-m的三个零点,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.下列命题:
①常数列既是等差数列又是等比数列;
②若直线l:y=kx-$\sqrt{3}$与直线2x+3y-6=0的交点位于第一象限,则直线l的倾斜角的取值范围是($\frac{π}{6}$,$\frac{π}{2}$);
③若α,β都是锐角,sinα=$\frac{4}{5}$,cos(α+β)=$\frac{5}{13}$,则cosβ=$\frac{63}{65}$
④如果(a-2)x2+(a-2)x-1≤0对任意实数x总成立,则a的取值范围是[-2,2].
其中所有正确命题的序号是②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某同学对函数f(x)=xsinx进行研究后,得到以下结论:
①函数f(x)的图象是轴对称图形;
②存在实数x,使得|f(x)|>|x|成立;
③函数f(x)的图象与直线y=x有无穷多个公共点,且任意相邻两点距离相等;
④当常数k满足|k|>1时,函数f(x)的图象与直线y=x有且仅有一个公共点.
其中所有正确结论的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若a>b>1,c<0,则(  )
A.ac>bcB.bc>cC.a|c|>b|c|D.$\frac{a}{c}$>$\frac{b}{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三棱锥S-ABC中,SA⊥底面ABC,AC=AB=SA=2,AC⊥AB,D、E分别是AC、BC的中点,F在SE上,且SF=2FE
(Ⅰ)求证:平面SBC⊥平面SAE
(Ⅱ)若G为DE中点,求二面角G-AF-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知极坐标系的极点与平面直角坐标系的原点重合,极轴与x轴正半轴重合,且长度单位相同,直线l的参数方程为$\left\{{\begin{array}{l}{x=t-1}\\{y=t+1}\end{array}}$(t为参数),圆C的极坐标方程为ρ=2$\sqrt{2}sin(θ-\frac{π}{4})$.
(1)把圆方程化成圆的标准方程并求圆心的极坐标;
(2)设直线l与圆C相交于M,N两点,求△MON的面积(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.一个四棱锥的正视图,侧视图(单位:cm)如图所示,
(1)请画出该几何体的俯视图;
(2)求该几何体的体积.

查看答案和解析>>

同步练习册答案