精英家教网 > 高中数学 > 题目详情
7.不论m为何值,直线l:mx+y-2+m=0恒过定点,则定点坐标为(  )
A.(-1,0)B.(-1,-2)C.(-1,2)D.(1,-2)

分析 把直线方程中参数m分离出来,再利用m(ax+by+c)+(a′x+b′y+c′)=0 经过直线ax+by+c=0和直线a′x+b′y+c′=0的交点,可得定点的坐标.

解答 解:直线l:mx+y-2+m=0,即 m(x+1)+y-2=0,恒经过直线x+1=0和直线y-2=0的交点(-1,2),
故选:C.

点评 本题主要考查直线过定点问题,利用了m(ax+by+c)+(a′x+b′y+c′)=0 经过直线ax+by+c=0和直线a′x+b′y+c′=0的交点,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.下列命题:
①常数列既是等差数列又是等比数列;
②若直线l:y=kx-$\sqrt{3}$与直线2x+3y-6=0的交点位于第一象限,则直线l的倾斜角的取值范围是($\frac{π}{6}$,$\frac{π}{2}$);
③若α,β都是锐角,sinα=$\frac{4}{5}$,cos(α+β)=$\frac{5}{13}$,则cosβ=$\frac{63}{65}$
④如果(a-2)x2+(a-2)x-1≤0对任意实数x总成立,则a的取值范围是[-2,2].
其中所有正确命题的序号是②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知极坐标系的极点与平面直角坐标系的原点重合,极轴与x轴正半轴重合,且长度单位相同,直线l的参数方程为$\left\{{\begin{array}{l}{x=t-1}\\{y=t+1}\end{array}}$(t为参数),圆C的极坐标方程为ρ=2$\sqrt{2}sin(θ-\frac{π}{4})$.
(1)把圆方程化成圆的标准方程并求圆心的极坐标;
(2)设直线l与圆C相交于M,N两点,求△MON的面积(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|x-2|,g(x)=-|x+3|+m.
(1)解关于x的不等式f(x)-$\frac{1}{4}$x-1>0;
(2)若函数f(x)的图象恒在函数g(x)图象的上方,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)满足f(1)=2,f(x+1)=$\frac{1+f(x)}{1-f(x)}$,则f(1)×f(2)×f(3)×…×f(2011)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在直角坐标系xOy中,以原点为极点,x轴的非负半轴为极轴,且取相同的单位长度建立极坐标系,若点P的极坐标为(2,$\frac{π}{3}$),则它的直角坐标为(  )
A.$(\sqrt{3},1)$B.(1,$\sqrt{3}$)C.(-1,$\sqrt{3}$)D.(1,-$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.一个四棱锥的正视图,侧视图(单位:cm)如图所示,
(1)请画出该几何体的俯视图;
(2)求该几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.命题“对任意x>1,x2>1”的否定是存在x>1,x2≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.点A(-2,a)、B(-1,b)、C(3,c)在双曲线y=$\frac{k}{x}$(k<0)上,则a、b、c的大小关系为c<a<b.(用”<”将a、b、c连接起来).

查看答案和解析>>

同步练习册答案