精英家教网 > 高中数学 > 题目详情
4.函数f(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…-$\frac{{x}^{2014}}{2014}$+$\frac{{x}^{2015}}{2015}$=cos2x在区间[-3,3]上的零点的个数为(  )
A.3B.4C.5D.6

分析 由题意和函数零点的定义得f(x)=0,即cos2x=0或1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…-$\frac{{x}^{2014}}{2014}$+$\frac{{x}^{2015}}{2015}$=0,由余弦函数的性质求出cos2x=0的根,令g(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…-$\frac{{x}^{2014}}{2014}$+$\frac{{x}^{2015}}{2015}$,求出g′(x)和符号,判断出g(x)的单调性和零点的个数,即可得到答案.

解答 解:由题意得,f(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…-$\frac{{x}^{2014}}{2014}$+$\frac{{x}^{2015}}{2015}$=cos2x=0,
①当cos2x=0时,由x∈[-3,3]得2x∈[-6,6],
解得x=$±\frac{π}{4}$或$±\frac{3π}{4}$;
②当1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…-$\frac{{x}^{2014}}{2014}$+$\frac{{x}^{2015}}{2015}$=0时,
设g(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…-$\frac{{x}^{2014}}{2014}$+$\frac{{x}^{2015}}{2015}$,
则g′(x)=1-x+x2-x3+…-x2013+x2014=$\left\{\begin{array}{l}{2015,x=-1}\\{\frac{1+{x}^{2015}}{1+x},x≠-1}\end{array}\right.$,
∴g′(x)>0,则g(x)在[-3,3]上单调递增,
∵g(-3)<0,g(3)>0,
∴g(x)在[-3,3]上有且仅有1个零点,
显然g($±\frac{π}{4}$)≠0、g($±\frac{3π}{4}$)≠0,
所以f(x)共有5个零点,
故选:C.

点评 本题考查函数的零点问题,余弦函数的性质,函数零点存在性定理,以及导数与函数的单调性关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知函数y=Asin(ωx+φ)的图象如图,则函数的解析式为(  )
A.y=sin(x+$\frac{π}{3}$)B.y=sin(2x+$\frac{π}{3}$)C.y=sin(2x-$\frac{π}{3}$)D.y=sin(2x+$\frac{2π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,已知a=5,B=45°,C=105°,求b,c,A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,连结CC′交斜边于点E,CC′的延长线交BB′于点F.
(1)证明:△ACE∽△FBE;
(2)设∠ABC=α,∠CAC′=β,试探索α、β满足什么关系时,△ACE与△FBE是全等三角形,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在周长为16的△PMN中,MN=6,则$\overrightarrow{PM}$•$\overrightarrow{PN}$的取值范围是(  )
A.[7,16)B.(7,16]C.[7,16]D.(7,16)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知M(x,y)在双曲线方程组$\left\{\begin{array}{l}{x=2secθ}\\{y=tanθ}\end{array}\right.$上,求M到N(-3,0)的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,正方体A1B1C1D1-ABCD中,E、F分别为B1C1,C1D1中点,
(1)求证:D1B1∥面EFDB;
(2)求直线BE与面ABCD所成角的正切值;
(3)求平面EFDB将正方体分成的两部分体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.将一张边长为1的正方形纸片ABCD沿对角线BD折起,使这两个直角三角形所成的二面角为60°,求此时AC的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若a>b>1,c<0,则(  )
A.ac>bcB.bc>cC.a|c|>b|c|D.$\frac{a}{c}$>$\frac{b}{c}$

查看答案和解析>>

同步练习册答案