分析 (1)椭圆C:$\left\{\begin{array}{l}x=\sqrt{2}cosϕ\\ y=sinϕ\end{array}$(φ为参数),利用平方关系消去参数化为普通方程,可得右焦点F(1,0).根据直线l:$\left\{\begin{array}{l}{x=tcosα+m}\\{y=tsinα}\end{array}\right.$(t为参数)恒经过点(c,0),可得m.
(2)当α=$\frac{π}{4}$时,直线l的参数方程为:$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t+1}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$,代入椭圆方程可得:3t2+2$\sqrt{2}$t-2=0,利用|FA|•|FB|=|t1t2|,即可得出.
解答 解:(1)椭圆C:$\left\{\begin{array}{l}x=\sqrt{2}cosϕ\\ y=sinϕ\end{array}$(φ为参数),消去参数化为:$\frac{{x}^{2}}{2}$+y2=1,可得右焦点F(1,0).
直线l:$\left\{\begin{array}{l}{x=tcosα+m}\\{y=tsinα}\end{array}\right.$(t为参数)恒经过点(1,0),取t=0,则m=1.
(2)当α=$\frac{π}{4}$时,直线l的参数方程为:$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t+1}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$,代入椭圆方程可得:3t2+2$\sqrt{2}$t-2=0,
∴t1t2=-$\frac{2}{3}$.
∴|FA|•|FB|=|t1t2|=$\frac{2}{3}$.
点评 本题考查了参数方程化为普通方程、直线参数方程的应用、直线经过定点问题、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com