精英家教网 > 高中数学 > 题目详情
14.已知直线l:$\left\{\begin{array}{l}{x=tcosα+m}\\{y=tsinα}\end{array}\right.$(t为参数)恒经过椭圆C:$\left\{\begin{array}{l}x=\sqrt{2}cosϕ\\ y=sinϕ\end{array}$(φ为参数)的右焦点F.
(1)求m的值;
(2)当α=$\frac{π}{4}$时直线l与椭圆C相交于A,B两点,求FA•FB的值.

分析 (1)椭圆C:$\left\{\begin{array}{l}x=\sqrt{2}cosϕ\\ y=sinϕ\end{array}$(φ为参数),利用平方关系消去参数化为普通方程,可得右焦点F(1,0).根据直线l:$\left\{\begin{array}{l}{x=tcosα+m}\\{y=tsinα}\end{array}\right.$(t为参数)恒经过点(c,0),可得m.
(2)当α=$\frac{π}{4}$时,直线l的参数方程为:$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t+1}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$,代入椭圆方程可得:3t2+2$\sqrt{2}$t-2=0,利用|FA|•|FB|=|t1t2|,即可得出.

解答 解:(1)椭圆C:$\left\{\begin{array}{l}x=\sqrt{2}cosϕ\\ y=sinϕ\end{array}$(φ为参数),消去参数化为:$\frac{{x}^{2}}{2}$+y2=1,可得右焦点F(1,0).
直线l:$\left\{\begin{array}{l}{x=tcosα+m}\\{y=tsinα}\end{array}\right.$(t为参数)恒经过点(1,0),取t=0,则m=1.
(2)当α=$\frac{π}{4}$时,直线l的参数方程为:$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t+1}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$,代入椭圆方程可得:3t2+2$\sqrt{2}$t-2=0,
∴t1t2=-$\frac{2}{3}$.
∴|FA|•|FB|=|t1t2|=$\frac{2}{3}$.

点评 本题考查了参数方程化为普通方程、直线参数方程的应用、直线经过定点问题、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,又BA1⊥AC1,CC1的中点为E.
(1)求三棱锥E-C1AB的体积;
(2)求平面ABE与平面AA1C1C夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知F(x)=f(x)-g(x),其中f(x)=$lo{g}_{\frac{1}{2}}$(x-2),当点(x,y)在y=f(x)的图象上时,就有(2x,2y)在y=g(x)的图象上.
(1)求g(x)的解析式;
(2)解不等式F(x)≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=|x-4|+a|x+2|(a∈R)的图象关于点(1,0)中心对称.
(1)求实数a的值;
(2)解不等式f(x)≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数r(x)=$\frac{1-x}{1+x}$,
(1)若f(x)=r(x)lnx,求函数f(x)的单调区间和最大值;
(2)若f(x)=$\frac{lnx}{ar(x)}$,且对任意x∈(0,1),恒有f(x)<-2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知平面上两点A(-2,0),B(2,0),在圆C:(x-1)2+(y+1)2=4上取一点P,求使|AP|2+|BP|2取得最小值时点P的坐标,取得最大值时点P的坐标,并求出最大、最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为:θ=$\frac{2π}{3}$,则直线l的直角坐标方程为$\sqrt{3}$x+y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}x=2cosα\\ y=sinα\end{array}$(α为参数),在以直角坐标系的原点为极点,x轴的正半轴为极轴的极坐标系中,直线l的极坐标方程为ρsin(θ-$\frac{π}{4}$)=$\frac{{\sqrt{2}}}{2}$.
(1)求曲线C在直角坐标系中的普通方程和直线l的倾斜角;
(2)设点P(0,1),若直线l与曲线C相交于不同的两点A,B,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=log2$\frac{{\sqrt{2}x}}{a-x}$,过定点A($\frac{1}{2},\frac{1}{2}$)的直线与函数f(x)的图象交于两点B、C,且$\overrightarrow{AB}+\overrightarrow{AC}$=$\overrightarrow 0$
(1)求a的值;
(2)若Sn=f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n-1}{n}$),n∈N*,且n≥2,求Sn
(3)已知数列{an}满足:a1=$\frac{2}{3}$,$\frac{1}{a_n}$=(Sn+1)(Sn+1+1),其中n∈N*.Tn为数列{an}的前n项和,若Tn<λ(Sn+1+1)对一切n∈N*都成立,试求λ的取值范围.

查看答案和解析>>

同步练习册答案