3£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2cos¦Á\\ y=sin¦Á\end{array}$£¨¦ÁΪ²ÎÊý£©£¬ÔÚÒÔÖ±½Ç×ø±êϵµÄÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨¦È-$\frac{¦Ð}{4}$£©=$\frac{{\sqrt{2}}}{2}$£®
£¨1£©ÇóÇúÏßCÔÚÖ±½Ç×ø±êϵÖÐµÄÆÕͨ·½³ÌºÍÖ±ÏßlµÄÇãб½Ç£»
£¨2£©ÉèµãP£¨0£¬1£©£¬ÈôÖ±ÏßlÓëÇúÏßCÏཻÓÚ²»Í¬µÄÁ½µãA£¬B£¬Çó|PA|+|PB|µÄÖµ£®

·ÖÎö £¨1£©ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2cos¦Á\\ y=sin¦Á\end{array}$£¨¦ÁΪ²ÎÊý£©£¬ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃÇúÏßCµÄÆÕͨ·½³Ì£®ÓÉÖ±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨¦È-$\frac{¦Ð}{4}$£©=$\frac{{\sqrt{2}}}{2}$£¬Õ¹¿ª»¯Îª£º$\frac{\sqrt{2}}{2}$¦Ñ£¨sin¦È-cos¦È£©=$\frac{\sqrt{2}}{2}$£¬ÀûÓû¥»¯¹«Ê½¿ÉµÃ£ºÖ±ÏßlµÄÆÕͨ·½³Ì£¬ÀûÓÃбÂÊÓëÇãб½ÇµÄ¹ØÏµ¼´¿ÉµÃ³ö£®
£¨2£©ÏÔÈ»µãP£¨0£¬1£©ÔÚÖ±Ïßl£ºx-y+1=0ÉÏ£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t\\ y=1+\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£®½«Ö±ÏßlµÄ²ÎÊý·½³Ì´úÈëÇúÏßCµÄÆÕͨ·½³Ì£¬µÃµ½¹ØÓÚtµÄÒ»Ôª¶þ´Î·½³Ì£¬´Ë·½³ÌµÄÁ½¸ùΪֱÏßlÓëÇúÏßCµÄ½»µãA£¬B¶ÔÓ¦µÄ²ÎÊýtA£¬tB£¬ÀûÓÃ|PA|+|PB|=|tA|+|tB|¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2cos¦Á\\ y=sin¦Á\end{array}$£¨¦ÁΪ²ÎÊý£©£¬
ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃÇúÏßCµÄÆÕͨ·½³ÌΪ$\frac{x^2}{4}+{y^2}=1$£®
ÓÉÖ±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨¦È-$\frac{¦Ð}{4}$£©=$\frac{{\sqrt{2}}}{2}$£¬
Õ¹¿ª»¯Îª£º$\frac{\sqrt{2}}{2}$¦Ñ£¨sin¦È-cos¦È£©=$\frac{\sqrt{2}}{2}$£¬
¿ÉµÃ£ºÖ±ÏßlµÄÆÕͨ·½³ÌΪx-y+1=0£¬Ð±ÂÊk=1£¬¡àÖ±ÏßlµÄÇãб½ÇΪ$\frac{¦Ð}{4}$£®
£¨2£©ÏÔÈ»µãP£¨0£¬1£©ÔÚÖ±Ïßl£ºx-y+1=0ÉÏ£®
ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t\\ y=1+\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£®
½«Ö±ÏßlµÄ²ÎÊý·½³Ì´úÈëÇúÏßCµÄÆÕͨ·½³Ì£¬µÃ$5{t^2}+8\sqrt{2}t=0$£®
´Ë·½³ÌµÄÁ½¸ùΪֱÏßlÓëÇúÏßCµÄ½»µãA£¬B¶ÔÓ¦µÄ²ÎÊýtA£¬tB£¬
¡àtA+tB=$-\frac{8\sqrt{2}}{5}$£®
¡à|PA|+|PB|=|tA|+|tB|=|tA+tB|=$\frac{8\sqrt{2}}{5}$£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢Ö±Ïß²ÎÊý·½³ÌµÄÓ¦Óá¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=|x+3|-m+1£¬m£¾0£¬f£¨x-3£©¡Ý0µÄ½â¼¯Îª£¨-¡Þ£¬-2]¡È[2£¬+¡Þ£©£®
£¨¢ñ£©ÇómµÄÖµ£»
£¨¢ò£©Èô?x¡ÊR£¬f£¨x£©¡Ý|2x-1|-t2+$\frac{5}{2}$t³ÉÁ¢£¬ÇóʵÊýtµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªÖ±Ïßl£º$\left\{\begin{array}{l}{x=tcos¦Á+m}\\{y=tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£©ºã¾­¹ýÍÖÔ²C£º$\left\{\begin{array}{l}x=\sqrt{2}cosϕ\\ y=sinϕ\end{array}$£¨¦ÕΪ²ÎÊý£©µÄÓÒ½¹µãF£®
£¨1£©ÇómµÄÖµ£»
£¨2£©µ±¦Á=$\frac{¦Ð}{4}$ʱֱÏßlÓëÍÖÔ²CÏཻÓÚA£¬BÁ½µã£¬ÇóFA•FBµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÉèÖ±ÏߵIJÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-4+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬µãPÔÚÖ±ÏßÉÏ£¬ÇÒÓëµãM£¨-4£¬0£©µÄ¾àÀëΪ$\sqrt{2}$£¬Èô½«Ö±ÏߵIJÎÊý·½³Ì¸Ãд³ö$\left\{\begin{array}{l}{x=-4+t}\\{y=t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÔòÔÚÕâ¸ö·½³ÌÖеãP¶ÔÓ¦µÄ²ÎÊýtµÈÓÚ¶àÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÈçͼËùʾ£¬ÔÚÕý·½ÌåABCD-A1B1C1D1ÖУ¬M£¬N£¬P·Ö±ðÊÇÀâCC1£¬BC£¬A1B1Éϵĵ㣬Èô¡ÏB1MN=90¡ã£®Ôò¡ÏPMNµÄ´óСÊÇ£¨¡¡¡¡£©
A£®µÈÓÚ90¡ãB£®Ð¡ÓÚ90¡ãC£®´óÓÚ90¡ãD£®²»È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖªº¯Êýf£¨x£©=x3-x+2£¬Ôòf£¨x£©ÔÚ[0£¬1]ÉϵÄ×îСֵΪ$2-\frac{{2\sqrt{3}}}{9}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®£¨¢ñ£©ÒÑÖªÃüÌâp£ºº¯Êýf£¨x£©=£¨2a-5£©xÊÇRÉϵļõº¯Êý£»
ÃüÌâq£ºÔÚx¡Ê£¨1£¬2£©Ê±£¬²»µÈʽx2-ax+2£¼0ºã³ÉÁ¢£¬Èôp¡ÅqÊÇÕæÃüÌ⣬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨¢ò£©ÉèÌõ¼þp£º2x2-3x+1¡Ü0£¬Ìõ¼þq£ºx2-£¨2a+1£©x+a£¨a+1£©¡Ü0£¬Èô©VpÊÇ©VqµÄ±ØÒª²»³ä·ÖÌõ¼þ£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èçͼ£¬Ôڱ߳¤Îª1µÄÕý·½ÌåABCD-A1B1C1D1ÖУ¬ÇóB1µ½Æ½ÃæBCD1µÄ¾àÀ루¡¡¡¡£©
A£®1B£®$\frac{1}{2}$C£®$\frac{{\sqrt{2}}}{2}$D£®$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªº¯Êýy=f£¨x£©ÊÇżº¯Êý£¬Èôg£¨x£©=f£¨x£©+2ÇÒg£¨1£©=1£¬Ôòg£¨-1£©µÄÖµ1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸