精英家教网 > 高中数学 > 题目详情
19.已知平面上两点A(-2,0),B(2,0),在圆C:(x-1)2+(y+1)2=4上取一点P,求使|AP|2+|BP|2取得最小值时点P的坐标,取得最大值时点P的坐标,并求出最大、最小值.

分析 将圆的方程化为参数方程,根据参数方程设出P的坐标为(1+2cosθ,-1+2sinθ),再由A和B的坐标,求出$\overrightarrow{AP},\overrightarrow{BP}$的坐标,可得|AP|2+|BP|2,整理后利用两角和与差的正弦函数公式化为一个角的正弦函数,由正弦函数的值域即可得出所求式子的最值,以及此时θ的值,即可确定出此时P的坐标.

解答 解:圆C:(x-1)2+(y+1)2=4的参数方程为$\left\{\begin{array}{l}{x=1+2cosθ}\\{y=-1+2sinθ}\end{array}\right.$,
设点P的坐标(1+2cosθ,-1+2sinθ),
∵A(-2,0),B(2,0),
∴$\overrightarrow{AP}=(3+2cosθ,-1+2sinθ)$,$\overrightarrow{BP}=(-1+2cosθ,-1+2sinθ)$,
∴|AP|2+|BP|2=(3+2cosθ)2+(-1+2sinθ)2+(-1+2cosθ)2+(-1+2sinθ)2
=-8sinθ+8cosθ+20=$-8\sqrt{2}sin(θ-\frac{π}{4})+20$.
∴当sin($θ-\frac{π}{4}$)=1,即$θ-\frac{π}{4}=\frac{π}{2}+2kπ$,$θ=\frac{3π}{4}+2kπ,k∈Z$时,|AP|2+|BP|2取得最小值20-$8\sqrt{2}$.
此时P(1+2cosθ,-1+2sinθ)=(1-$\sqrt{2}$,-1+$\sqrt{2}$);
当sin($θ-\frac{π}{4}$)=-1,即$θ-\frac{π}{4}=-\frac{π}{2}+2kπ$,$θ=-\frac{π}{4}+2kπ,k∈Z$时,|AP|2+|BP|2取得最大值$20+8\sqrt{2}$.
此时P(1+2cosθ,-1+2sinθ)=(1+$\sqrt{2}$,-1-$\sqrt{2}$).

点评 本题考查了两角和与差的正弦函数公式,圆的参数方程,同角三角函数间的基本关系,正弦函数的定义域与值域,以及两点间的距离公式,熟练掌握公式是解答本题的关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=lnx+\frac{1}{2}m{x^2}$(m∈R),
(Ⅰ)求曲线y=f(x)在(1,f(1))处的切线与直线x+2y-5=0垂直,求m的值;
(Ⅱ)若关于x的不等式f(x)≤mx2+(m-1)x-1恒成立,求整数m的最小值;
(Ⅲ)若m=1,m∈R设F(x)=f(x)+x.且正实数x1,x2满足F(x1)=-F(x2),求证:x1+x2≥$\sqrt{3}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρcos(θ-$\frac{π}{3}$)=1,A,B分别为C与x轴,y轴的交点.
(1)写出C的直角坐标方程,并求A,B的极坐标;
(2)设M为曲线C上的一个动点,$\overrightarrow{OQ}$=λ•$\overrightarrow{OM}$(λ>0),|$\overrightarrow{OM}$|•|$\overrightarrow{OQ}$|=2,求动点Q的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某班主任对全班50名学生进行了作业量多少的调查,喜欢玩电脑游戏的同学认为作业多的有20人,认为作业不多的有5人;不喜欢玩电脑游戏的同学认为作业多的有10人,认为作业不多的有l5人.
(I)根据以上数据画出2×2列联表;
(Ⅱ)根据表中数据,试问:喜欢玩电脑游戏与作业量的多少有关系的把握大约是多少?
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 P(K2≥k0 0.10 0.05 0.025 0.010 0.005 0.001
 k0 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线l:$\left\{\begin{array}{l}{x=tcosα+m}\\{y=tsinα}\end{array}\right.$(t为参数)恒经过椭圆C:$\left\{\begin{array}{l}x=\sqrt{2}cosϕ\\ y=sinϕ\end{array}$(φ为参数)的右焦点F.
(1)求m的值;
(2)当α=$\frac{π}{4}$时直线l与椭圆C相交于A,B两点,求FA•FB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.极坐标方程:ρsinθ=sin2θ表示的曲线为(  )
A.一条直线和一个圆B.一条射线和一个圆
C.两条直线D.一个圆

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设直线的参数方程为$\left\{\begin{array}{l}{x=-4+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),点P在直线上,且与点M(-4,0)的距离为$\sqrt{2}$,若将直线的参数方程该写出$\left\{\begin{array}{l}{x=-4+t}\\{y=t}\end{array}\right.$(t为参数),则在这个方程中点P对应的参数t等于多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=x3-x+2,则f(x)在[0,1]上的最小值为$2-\frac{{2\sqrt{3}}}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.tan(arccos(-$\frac{{\sqrt{2}}}{2}$))=-1.

查看答案和解析>>

同步练习册答案