精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=ex-ax-a,e为自然对数的底数
(1)若x∈R,不等式f(x)≥0恒成立,求实数a的取值范围;
(2)求证:n∈N*,不等式$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n+1}$>$\frac{{e}^{n}-1}{{e}^{n+1}-{e}^{n}}$恒成立.

分析 (1)由f(x)=ex-ax-a,求出导数f'(x)=ex-a,从而化恒成立问题为最值问题,讨论a=0,a<0,a>0,求实数a的取值范围;
(2)由(1)和已知可得,ex≥x+1,可得.n∈N*时,en>n+1,即$\frac{1}{n+1}$>$\frac{1}{{e}^{n}}$.由等比数列的求和公式和累加法,即可得证.

解答 解:(1)由f(x)=ex-ax-a,f'(x)=ex-a,
若a<0,则f'(x)>0,函数f(x)单调递增,
当x趋近于负无穷大时,f(x)趋近于负无穷大;
当x趋近于正无穷大时,f(x)趋近于正无穷大,
故a<0不满足条件.
若a=0,f(x)=ex≥0恒成立,满足条件.
若a>0,由f'(x)=0,得x=lna,
当x<lna时,f'(x)<0;当x>lna时,f'(x)>0,
所以函数f(x)在(-∞,lna)上单调递减,在(lna,+∞)上单调递增,
所以函数f(x)在x=lna处取得极小值f(lna)=elna-a•lna-a=-a•lna,
由f(lna)≥0得-a•lna≥0,
解得0<a≤1.
综上,满足f(x)≥0恒成立时实数a的取值范围是[0,1].
(2)证明:由(1)和已知可得,当a=1时,f(x)=ex-x-1≥0恒成立,
即为ex≥x+1,当且仅当x=0时,取得等号.
则n∈N*时,en>n+1,即$\frac{1}{n+1}$>$\frac{1}{{e}^{n}}$.
又$\frac{1}{e}$+$\frac{1}{{e}^{2}}$+$\frac{1}{{e}^{3}}$+…+$\frac{1}{{e}^{n}}$=$\frac{\frac{1}{e}(1-\frac{1}{{e}^{n}})}{1-\frac{1}{e}}$=$\frac{{e}^{n}-1}{{e}^{n+1}-{e}^{n}}$,
则$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n+1}$>$\frac{{e}^{n}-1}{{e}^{n+1}-{e}^{n}}$恒成立.

点评 本题考查不等式恒成立问题的解法,注意运用导数,判断单调性,求最值,考查不等式的证明,注意运用累加法和已知结论,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.在△ABC中,D为BC边中点,G为AD中点,直线EF过G与边AB、AC相交于E、F,且$\overrightarrow{AE}$=m$\overrightarrow{AB}$,$\overrightarrow{AF}$=n$\overrightarrow{AC}$,则m+n的最小值为(  )
A.4B.$\frac{1}{2}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知F1、F2为椭圆C:$\frac{{2{x^2}}}{9}+\frac{{2{y^2}}}{5}$=1的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2(  )
A.$\frac{1}{4}$B.$\frac{3}{5}$C.$\frac{3}{4}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,PA⊥面ABCD,PA=$\sqrt{3}$,E是BC的中点,F是PA上的一个动点.
(1)求证:CF⊥BD;
(2)求二面角D-PE-A的大小的正弦值;
(3)若直线EF与平面CDE所成角的正切值为$\frac{1}{\sqrt{21}}$,求AF的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知A、B、C是平面内共线的三个点,P是平面内的任意一点,且满足$\overrightarrow{PC}$=sinαcosβ$\overrightarrow{PA}$-cosαsinβ$\overrightarrow{PB}$,则α-β的一个可能值为(  )
A.-$\frac{π}{2}$B.0C.$\frac{π}{2}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求下列函数的值域:
(1)y=log${\;}_{\frac{1}{2}}$$\sqrt{4-{x}^{2}}$;
(2)y=$\frac{{2}^{x}+1}{{2}^{x}-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若运行如图所示的程序框图,则输出结果S的值为2500.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知椭圆和双曲线有共同的焦点F1,F2,P是它们的一个交点,且∠F1PF2=$\frac{π}{3}$,记椭圆和双曲线的离心率分别为e1,e2,则当$\frac{1}{{{e_1}{e_2}}}$取最大值时,e1,e2的值分别是(  )
A.$\frac{{\sqrt{2}}}{2},\frac{{\sqrt{6}}}{2}$B.$\frac{1}{2},\frac{{\sqrt{5}}}{2}$C.$\frac{{\sqrt{3}}}{3},\sqrt{6}$D.$\frac{{\sqrt{2}}}{4},\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,已知角A,B,C的对边分别为a,b,c,且a=bcosC+csinB,则角B为$\frac{π}{4}$.

查看答案和解析>>

同步练习册答案