精英家教网 > 高中数学 > 题目详情

一个动圆与定圆相外切,且与定直线相切,则此动圆的圆心的轨迹方程是(    )

A. B. C. D.

D.

解析试题分析:由题意知,点到定点的距离减去1等于到定直线的距离,即点到定点的距离等于到定直线的距离.由抛物线的定义知,点的轨迹方程为抛物线且焦点坐标为,准线方程为,即可求出该点的轨迹方程.
考点:抛物线的定义;轨迹方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:单选题

斜率为2的直线L 经过抛物线的焦点F,且交抛物线与A、B两点,若AB的中点到抛物线准线的距离1,则P的值为( ).
A.1               B.           C.            D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

巳知中心在坐标原点的双曲线C与拋物线x2="2py(p" >0)有相同的焦点F,点A是两曲线的交点,且AF丄y轴,则双曲线的离心率为(   )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知抛物线的准线与圆相切,则的值为

A. B.1 C.2 D.4

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

分别是椭圆的左、右焦点,过的直线交椭圆于两点,若,则椭圆的离心率为(    )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知曲线::,且曲线的焦点分别为,点的一个交点,则△的形状是(   )

A.锐角三角形 B.直角三角形 C.钝角三角形 D.都有可能 

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知双曲线 的一个焦点与抛物线的焦点重合,且双曲线的离心率等于,则该双曲线的方程为(   )

A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)
求过两点且圆心在x轴上的圆的标准方程并判断点与圆的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设抛物线x2=4y与椭圆=1交于点E,F,则△OEF(O为坐标原点)的面积为(  )

A.3 B.4 C.6 D.12

查看答案和解析>>

同步练习册答案