精英家教网 > 高中数学 > 题目详情
16.函数f(x)=$\sqrt{{{log}_2}x-2}$的定义域是[4,+∞)..

分析 函数f(x)=$\sqrt{{{log}_2}x-2}$有意义,只需log2x-2≥0,且x>0,解不等式即可得到所求定义域.

解答 解:函数f(x)=$\sqrt{{{log}_2}x-2}$有意义,
只需log2x-2≥0,且x>0,
解得x≥4.
则定义域为[4,+∞).
故答案为:[4,+∞).

点评 本题考查函数的定义域的求法,注意运用偶次根式被开方数非负,对数的真数大于0,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.不等式组$\left\{\begin{array}{l}x-y+5≥0\\ x+y≥0\\ x≤3\end{array}\right.$,表示的平面区域的面积为$\frac{121}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知圆C:x2+y2+2x-4y+1=0关于直线2ax-by+2=0对称,则ab的取值范围是(  )
A.[0,$\frac{1}{4}$]B.[-$\frac{1}{4}$,0]C.(-∞,$\frac{1}{4}$]D.[$\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若x∈(0,$\frac{π}{3}$],则函数y=sinx+cosx的值域是(1,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.以下六个关系式:①0∈{0},②{0}?∅,③0.3∉Q,④0∈N,⑤{a,b}⊆{b,a},⑥{x|x2-2=0,x∈Z}是空集,其中错误的个数是(  )
A.1B.3C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.统计局就某地居民的月收入情况调查了10 000人,并根据所得数据画了样本频率分布直方图,每个分组包含左端点,不包含右端点.
(1)为了分析居民的收入与年龄、职业等方面的关系,需再从这10 000人中用分层抽样法抽出100人作进一步分析,则月收入在2 000 至2 500元的应抽取多少人?
(2)根据频率分布直方图估计样本数据的中位数;
(3)根据频率分布直方图估计样本数据的平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线C:$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的左、右焦点分别为F1,F2,P为C的右支上一点,且|PF2|=$\frac{8}{15}$|F1F2|,则△PF1F2的面积等于(  )
A.$\frac{80}{3}$B.$\frac{1}{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.顶点在x轴上,两顶点间的距离为8,离心率e=$\frac{5}{4}$的双曲线为(  )
A.$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{25}$=1C.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1D.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0的左、右焦点分别为F1、F2,以F1F2为直径的圆被直线$\frac{x}{a}$+$\frac{y}{b}$=1截得的弦长为$\sqrt{6}$a,则双曲线的离心率为$\sqrt{2}$:

查看答案和解析>>

同步练习册答案