精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1-x
+
1+x
,若x,y满足f(x+1)-f(y)>0,则x2+y2-2x+1的取值范围是
 
考点:函数的最值及其几何意义
专题:综合题,函数的性质及应用
分析:求函数的定义域,判断函数的奇偶性和单调性,将不等式转化为不等式组,利用线性规划的知识进行求解.
解答: 解:由
1-x≥0
1+x≥0
,得-1≤x≤1,
故函数的定义域为[-1,1],
f(-x)=
1-x
+
1+x
=f(x),
则函数f(x)是偶函数,
当0≤x≤1时,函数的导数f′(x)=-
1
1-x
+
1
1+x
<0,
即此时函数单调递减,
则f(x+1)-f(y)>0等价为f(x+1)>f(y),
即f(|x+1|)>f(|y|),
-1≤x+1≤1
-1≤y≤1
|x+1|>|y|

作出不等式组对应的平面区域如图:
x2+y2-2x+1=(x-1)2+y2的几何意义是区域内的点到点Q(1,0)的距离的平方,
由图象可知,OQ的距离最小为1,AQ或BQ的距离最大,此时最大值为(-2-1)2+12=10,
故x2+y2-2x+1的取值范围是(1,10),
故答案为:(1,10).
点评:本题主要考查线性规划的应用以及两点间的距离公式,利用数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tanα=2,求
1
sinα•cosα

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=cosx(2
3
sinx-cosx)+acos2
π
2
+x)的一个零点是x=
π
12

(1)求函数f(x)的周期;
(2)求函数f(x)单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量|
a
|=3,|
b
|=4,|
a
-
b
|=5,则|
a
+
b
|=(  )
A、3B、4C、5D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知函数f(x)的定义域为[1,4],求函数f(x+2)的定义域;
(2)求函数f(x)=
x-2
-x的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个袋子中有号码为1、2、3、4、5大小相同的5个小球,现从袋中任意取出一个球,取出后不放回,然后再从袋中任取一个球,则第一次取得号码为奇数,第二次取得号码为偶数球的概率为(  )
A、
3
5
B、
4
5
C、
3
20
D、
3
10

查看答案和解析>>

科目:高中数学 来源: 题型:

求该四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x
1-x2
的最大值为(  )
A、
3
4
B、0
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

从1,2,3,4,7,9六个数中任取两个数作为对数的底数和真数,则所有不同的对数的值的个数为
 

查看答案和解析>>

同步练习册答案