精英家教网 > 高中数学 > 题目详情
12.某厂生产A与B两种产品,每公斤的产值分别为600元与400元,又知每生产1公斤A产品需要电力2千瓦、煤4吨;生产1公斤B产品需要电力3千瓦、煤2吨.但该厂的电力供应不得超过100千瓦.煤最多只有120吨.问如何安排生产计划(生产A产品7.5公斤、B产品35公斤)才能使产值最大?

分析 先设生产甲、乙两种产品分别为x千克,y千克,其利产值为z元,列出约束条件,再根据约束条件画出可行域,设z=600x+400y,再利用z的几何意义求最值,只需求出直线z=600x+400y过可行域内的点时,从而得到z值即可.

解答 解析:设生产甲、乙两种产品分别为x千克,y千克,其利产值为z元,
根据题意,可得约束条件为$\left\{\begin{array}{l}{4x+2y≤100}\\{2x+3y≤120}\\{x≥0,y≥0}\end{array}\right.$…(3分)
作出可行域如图:….(5分)
目标函数z=600x+400y,
作直线l0:3x+2y=0,再作一组平行于l0的直线l:3x+2y=z,当直线l经过P点时z=600x+400y取得最大值,….(9分)
由 $\left\{\begin{array}{l}{4x+2y=100}\\{2x+3y=120}\end{array}\right.$,
解得交点P( 7.5,35)….(12分)
所以有z最大=600×7.5+400×35=18500(元)…(13分)
所以生产甲产品7.5千克,乙产品35千克时,总产值最大,为18500元.…(14分).
故答案为:7.5;35.

点评 本题是一道方案设计题型,考查了列一元一次不等式组解实际问题的运用及一元一次不等式组的解法的运用,解答时找到题意中的不相等关系是建立不等式组的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知不等式:|x-1|-|x+3|<a的解集为R,则实数a的取值范围是(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在6枚硬币A,B,C,D,E,F中,有5枚是真币,1枚是假币,5枚真币重量相同,假币与真币的重量不同,现称得A和B共重10克,C,D共重11克,A,C,E共重16克,则假币为(  )
A.AB.BC.CD.D

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)与双曲线$\frac{x^2}{3}$-y2=1的离心率互为倒数,且直线x-y-2=0经过椭圆的右顶点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设不过原点O的直线l与椭圆C交于M、N两点,且直线OM、MN、ON的斜率依次成等比数列,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{17π}{6}$B.$\frac{17π}{3}$C.D.$\frac{13π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设A={x|x2+ax+12=0},B={x|x2+3x+2b=0},A∩B={2},C={2,-3}.
(1)求a,b的值及A,B;
(2)求(A∪B)∩C.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.以下关于二面角的命题中,正确的有①④.
①若一个平面与二面角的棱垂直,则该平面与二面角的两个半平面的交线所成的角就是二面角的平面角;
②二面角α-l-β的大小为θ1,m,n为直线且m⊥α,n⊥β,m与n所成的角为θ2,则θ12=π;
③一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角的平面角相等或者互补; 
④三棱锥侧面与侧面所成的二面角都相等且底面是正三角形,则该三棱锥一定是正三棱锥.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,四边形ABCD中,AB=AC=AD,AH⊥CD于H,BD交AH于P,且PC⊥BC
(Ⅰ)求证:A,B,C,P四点共圆;
(Ⅱ)若∠CAD=$\frac{π}{3}$,AB=1,求四边形ABCP的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知实数x,y满足y=|x-1|+|x+2|,-3≤x≤3,试求$\frac{y-1}{x+4}$的最大值和最小值.

查看答案和解析>>

同步练习册答案