精英家教网 > 高中数学 > 题目详情
3.在6枚硬币A,B,C,D,E,F中,有5枚是真币,1枚是假币,5枚真币重量相同,假币与真币的重量不同,现称得A和B共重10克,C,D共重11克,A,C,E共重16克,则假币为(  )
A.AB.BC.CD.D

分析 由题意可知,C,D中一定有一个为假的,分别假设C为假币,或D为假币,去判断假设是否成立,问题得以解决.

解答 解:5枚真币重量相同,则任意两枚硬币之和一定为偶数,
由题意可知,C,D中一定有一个为假的,
假设C为假币,则真硬币的重量为5克,则C的重量为6克,满足A,C,E共重16克,故假设成立,
若D为假币,则真硬币的重量为5克,不满足A,C,E共重16克,故假设不成立,则D是真硬币,
故选:C

点评 本题考查了合情推理的问题,关键是利用反证法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{1}{3}$ax3-$\frac{3}{2}$x2+x,a∈R.
( 1)若曲线y=f(x)在x=x0处的切线方程为y=x-2,求a的值;
(2)若f′(x)是f(x)的导函数,且不等式f′(x)≥xlnx恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在曲线$\left\{\begin{array}{l}{x=1+{t}^{2}+{t}^{4}}\\{y={t}^{3}-3t+2}\end{array}\right.$(t为参数)上的点是(  )
A.(0,2)B.(-1,6)C.(1,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某媒体对“推迟退休”这一公众关注的问题进行了民意调查,下面是在某两单位得到的数据(人数).
赞同反对合计
企业职工102030
事业职工20525
合计302555
(1)是否有99.9%的把握认为赞同“推迟退休”与职业有关?
(2)用分层抽样的方法从赞同“推迟退休”的人员中随机抽取6人作进一步调查分析,将这6人作为一个样本,从中任选2人,求恰有1名为企业职工和1名事业职工的概率.
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设f(x) 为定义在R上的偶函数,当0≤x≤2时,y=x;当x>2时,y=f(x)的图象是顶点在P(3,4),且过点A(2,2)的抛物线的一部分.
(1)求函数f(x) 在(-∞,2)上的解析式,并写出函数f(x)的值域和单调区间;(值域和单调区间直接写,不用给予证明)
(2)若f(x)<log${\;}_{\frac{1}{2}}$k+2 对x∈R恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知定义在R上的函数f(x)满足:f(x)=$\left\{{\begin{array}{l}{{x^2}+1,x∈[0,1)}\\{1-{x^2},x∈[-1,0)}\end{array}}$,且f(x+1)=f(x-1),函数g(x)=$\frac{x+3}{x+2}$,则方程f(x)=g(x)在区间[-7,3]上所有实根之和为(  )
A.-6B.-8C.-11D.-12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右顶点为A,上顶点为B,离心率e=$\frac{1}{2}$,若圆x2+y2=$\frac{12}{7}$与直线AB相切.
(1)求椭圆的标准方程;
(2)是否存在过右焦点F的直线l与椭圆交于M,N两点,使得$\frac{1}{|MF|}$+$\frac{1}{|NF|}$为定值,若存在,求出该定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某厂生产A与B两种产品,每公斤的产值分别为600元与400元,又知每生产1公斤A产品需要电力2千瓦、煤4吨;生产1公斤B产品需要电力3千瓦、煤2吨.但该厂的电力供应不得超过100千瓦.煤最多只有120吨.问如何安排生产计划(生产A产品7.5公斤、B产品35公斤)才能使产值最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=lnx+$\frac{a}{x-1}$(a为常实数)
(Ⅰ)若?x0∈[e,e2],(e为自然对数的底数,且e≈2.71828…),使得f(x0)>0,求实数a的取值范围;
(Ⅱ)若实数a>0,函数f(x)在(0,$\frac{1}{e}$)内有极值点,当x1∈(0,1),x2∈(1,+∞),求证:f(x2)-f(x1)>2e-$\frac{4}{3}$(e=2.71828…)

查看答案和解析>>

同步练习册答案