精英家教网 > 高中数学 > 题目详情
13.已知f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x-1},x≤0}\\{lo{g}_{\frac{1}{3}}x,x>0}\end{array}\right.$,且f(a-3)=0,则a=4,不等式f(x)>a的解集为{x|x<-1或0<x<$\frac{1}{81}$}.

分析 根据分段函数的表达式进行求解即可a的值,讨论x的取值范围结合指数不等式和对数不等式的解法进行求解即可.

解答 解:∵当a-3≤0时,f(x)=($\frac{1}{2}$)a-3-1=0,此时方程无解,
∴a-3≤0不成立,
当a-3>0时,即a>3,
则由f(a-3)=0得log${\;}_{\frac{1}{3}}$(a-3)=0,则a-3=1,得a=4,
最大不等式f(x)>a等价为f(x)>4,
若x≤0时,f(x)=($\frac{1}{2}$)x-1>4,得x-1<-2.得x<-1,
当x>0时,f(x)>4,得log${\;}_{\frac{1}{3}}$x>4得0<x<$\frac{1}{81}$,
综上不等式的解集为{x|x<-1或0<x<$\frac{1}{81}$},
故答案为:4,{x|x<-1或0<x<$\frac{1}{81}$}

点评 本题主要考查分段函数的应用,根据分段函数的表达式进行讨论求解是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.有甲、乙两个班,进行数学考试,按学生考试及格与不及格统计成绩后,得到如下的列联表.能否在犯错误的概率不超过0.01的前提下认为成绩及格与班级有关系?
不及格及格总计
甲班103545
乙班73845
总计177390
K2=$\frac{n(ad-bc)^{2}}{(a+d)(c+d)(a+c)(b+d)}$
依据表
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
   k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.命题:
(1)夹在两平行平面间的两个几何体,被一个平行于这两个平面的平面所截,若截得两个截面的面积总相等,则这两个几何体的体积出相等;
(2)直棱柱和圆柱侧面展开图都是矩形;
(3)斜棱柱的体积等于与它的一条侧棱垂直的截面面积乘以它的一条侧棱;
(4)平行六面体的对角线交于一点,且互相平分;
其中正确的个数是(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=cosαsinx+$\frac{3}{5}$cosx+1,α为常数,α∈[$\frac{3π}{2}$,2π],且f($\frac{3π}{2}$)=$\frac{1}{5}$.
(1)求sinα和cos2α的值;
(2)求f(x)的最大值、最小值及最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.一房产商竞标得一块扇形OPQ地皮,其圆心角∠POQ=$\frac{π}{3}$,半径为R=200m,房产商欲在此地皮上修建一栋平面图为矩形的商住楼,为使得地皮的使用率最大,准备了两种设计方案如图,方案一:矩形ABCD的一边AB在半径OP上,C在圆弧上,D在半径OQ;方案二:矩形EFGH的顶点在圆弧上,顶点G,H分别在两条半径上.请你通过计算,为房产商提供决策建议.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在区间(0,1)上随机取两个实数m,n,则关于x的一元二次方程x2-2$\sqrt{m}$x+2n=0有实数根的概率为(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{3}{8}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知离心率为$\frac{{\sqrt{2}}}{2}$的椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)经过点A(1,$\frac{{\sqrt{2}}}{2}$).
(1)求椭圆E的方程;
(2)若不过点A的直线l:y=$\frac{{\sqrt{2}}}{2}$x+m交椭圆E于B,C两点,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.椭圆C:$\frac{x^2}{4}$+$\frac{y^2}{3}$=1的左焦点为F,右顶点为A1,过点F斜率为k的直线交椭圆C于A,B两点,线段AB的中点为G,线段AB的垂直平分线交x轴于点D,交y轴于点E,O是坐标原点,记△GFD的面积为S1,记△OED的面积为S2
(I),求点D的坐标(用k表示);
(II)求$\frac{{2{S_1}{S_2}}}{S_1^2+S_2^2}$的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知奇函数y=$\left\{\begin{array}{l}{{a}^{x},x>0}\\{f(x),x<0}\end{array}\right.$(a>0且a≠1)的部分图象如图所示,那么f(x)=(  )
A.2xB.$-{(\frac{1}{2})^x}$C.${({\frac{1}{2}})^x}$D.-2x

查看答案和解析>>

同步练习册答案