8£®Ò»·¿²úÉ̾º±êµÃÒ»¿éÉÈÐÎOPQµØÆ¤£¬ÆäÔ²ÐĽǡÏPOQ=$\frac{¦Ð}{3}$£¬°ë¾¶ÎªR=200m£¬·¿²úÉÌÓûÔÚ´ËµØÆ¤ÉÏÐÞ½¨Ò»¶°Æ½ÃæÍ¼Îª¾ØÐεÄÉÌס¥£¬ÎªÊ¹µÃµØÆ¤µÄʹÓÃÂÊ×î´ó£¬×¼±¸ÁËÁ½ÖÖÉè¼Æ·½°¸Èçͼ£¬·½°¸Ò»£º¾ØÐÎABCDµÄÒ»±ßABÔÚ°ë¾¶OPÉÏ£¬CÔÚÔ²»¡ÉÏ£¬DÔÚ°ë¾¶OQ£»·½°¸¶þ£º¾ØÐÎEFGHµÄ¶¥µãÔÚÔ²»¡ÉÏ£¬¶¥µãG£¬H·Ö±ðÔÚÁ½Ìõ°ë¾¶ÉÏ£®ÇëÄãͨ¹ý¼ÆË㣬Ϊ·¿²úÉÌÌṩ¾ö²ß½¨Ò飮

·ÖÎö ·ÖÀàÌÖÂÛ£¬°´ÕÕ·½°¸Ò»£¬¶þµÄÒªÇó½øÐÐÌÖÂÛ£®
·½°¸Ò»£ºÁ¬OC£¬Éè$¡ÏPOC=x£¬x¡Ê£¨0£¬\frac{¦Ð}{4}£©$£¬Éè¾ØÐÎABCDµÄÃæ»ýΪy£¬Ôòy=AB•BC£¬Í¨¹ý´úÈ뻯¼ò£¬ÓÉÈý½Çº¯ÊýµÄ×îֵȷ¶¨µÄÌõ¼þ£¬¿ÉÒԵóö´ð°¸£»
·½°¸¶þ£º×÷¡ÏPOQµÄƽ·ÖÏß·Ö±ð½»EF£¬GHÓÚµãM£¬N£¬Á¬OE£®Éè$¡ÏMOE=¦Á£¬¦Á¡Ê£¨0£¬\frac{¦Ð}{6}£©$£¬Éè¾ØÐÎEFGHµÄÃæ»ýΪS£¬Çó³öSµÄʽ×Ó£¬ÓÉÈý½Çº¯ÊýµÄÐÔÖÊÇó³ö×îÖµ£®
×îºó£¬±È½Ï¶þÕß×î´óÖµµÄ´óС£¬Ñ¡³ö×î´óÖµ¼´¿ÉµÃ³ö´ð°¸£®

½â´ð ½â£º°´·½°¸Ò»£ºÈçͼ£¬Á¬OC£¬Éè$¡ÏPOC=x£¬x¡Ê£¨0£¬\frac{¦Ð}{4}£©$£¬

ÔÚRt¡÷OBCÖУ¬BC=Rsinx£¬OB=Rcosx£¬ÔòDA=Rsinx
ÔÚRt¡÷OADÖУ¬$\frac{DA}{OA}=tan\frac{¦Ð}{3}$£¬µÃ$OA=\frac{{\sqrt{3}}}{3}DA=\frac{{\sqrt{3}}}{3}Rsinx$£¬
Ôò$AB=OB-OA=R£¨cosx-\frac{{\sqrt{3}}}{3}sinx£©$£¬Éè¾ØÐÎABCDµÄÃæ»ýΪy£¬Ôò
y=AB•BC=${R}^{2}£¨sinxcosx-\frac{\sqrt{3}}{3}si{n}^{2}x£©$=$\frac{\sqrt{3}}{3}$sin£¨2x+$\frac{¦Ð}{6}$£©-$\frac{\sqrt{3}}{6}$£¬
ÓÉ$x¡Ê£¨0£¬\frac{¦Ð}{3}£©$µÃ$\frac{¦Ð}{6}£¼2x+\frac{¦Ð}{6}£¼\frac{5¦Ð}{6}$£®
ËùÒÔµ±$2x+\frac{¦Ð}{6}=\frac{¦Ð}{2}$£¬¼´$x=\frac{¦Ð}{6}$ʱ${y_{max}}=£¨\frac{{\sqrt{3}}}{3}-\frac{{\sqrt{3}}}{6}£©{R^2}=\frac{{\sqrt{3}}}{6}{R^2}$£®
°´·½°¸¶þ£ºÈçͼ×÷¡ÏPOQµÄƽ·ÖÏß·Ö±ð½»EF£¬GHÓÚµãM£¬N£¬Á¬OE£®

Éè$¡ÏMOE=¦Á£¬¦Á¡Ê£¨0£¬\frac{¦Ð}{6}£©$£¬ÔÚRt¡÷MOEÖУ¬ME=Rsin¦Á£¬OM=Rcos¦Á
ÔÚRt¡÷ONHÖУ¬$\frac{NH}{ON}=tan\frac{¦Ð}{6}$£¬µÃ$ON=\sqrt{3}NH=\sqrt{3}Rsin¦Á$£¬
Ôò$MN=OM-ON=R£¨cos¦Á-\sqrt{3}sin¦Á£©$£¬Éè¾ØÐÎEFGHµÄÃæ»ýΪS£¬
ÔòS=2ME•MN=2R2sin¦Á£¨cos¦Á-$\sqrt{3}$sin¦Á£©=R2£¨sin2¦Á+$\sqrt{3}$cos2¦Á-$\sqrt{3}$£©=$2{R^2}sin£¨2¦Á+\frac{¦Ð}{3}£©-\sqrt{3}{R^2}$
ÓÉ$¦Á¡Ê£¨0£¬\frac{¦Ð}{6}£©$£¬Ôò$\frac{¦Ð}{3}£¼2¦Á+\frac{¦Ð}{3}£¼\frac{2¦Ð}{3}$£¬ËùÒÔµ±$2¦Á+\frac{¦Ð}{3}=\frac{¦Ð}{2}$£¬¼´$¦Á=\frac{¦Ð}{12}$ʱ${S_{max}}=£¨2-\sqrt{3}£©{R^2}$¡ß$\frac{{\sqrt{3}}}{6}-2+\sqrt{3}=\frac{{7\sqrt{3}-12}}{6}£¾0$£¬¼´ymax£¾Smax
´ð£º¸ø·¿²úÉÌÌá³ö¾ö²ß½¨Ò飺ѡÓ÷½°¸Ò»¸üºÃ£®

µãÆÀ ±¾Ì⿼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬¿¼²éѧÉúµÄת»¯ÄÜÁ¦£¬ÒÔ¼°ÔËÓÃÈý½Ç֪ʶ½øÐÐÇó½âʵ¼ÊÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªÏòÁ¿$\overrightarrow m=£¨a£¬-2£©£¬\overrightarrow n=£¨a-3£¬1£©$£¬ÇÒ$\overrightarrow{m}$¡Î$\overrightarrow{n}$£¬ÔòʵÊýa=£¨¡¡¡¡£©
A£®1B£®6C£®2»ò1D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªa1=3£¬a2=6ÇÒan+2=an+1-an£¬Ôòa3Ϊ£¨¡¡¡¡£©
A£®3B£®-3C£®6D£®-6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÎªÁ˽⻧¼®ÓëÐÔ±ð¶ÔÉúÓý¶þ̥ѡÔñÇãÏòµÄÓ°Ï죬ijµØ´ÓÓýÁäÈËȺÖÐËæ»ú³éÈ¡ÁËÈÝÁ¿Îª100µÄµ÷²éÑù±¾£®ÆäÖУº³ÇÕò»§¼®ÓëÅ©´å»§¼®¸÷50ÈË£»ÄÐÐÔ60ÈË£¬Å®ÐÔ40ÈË£®»æÖƲ»Í¬ÈºÌåÖÐÇãÏòÑ¡ÔñÉúÓý¶þÌ¥ÓëÇãÏòÑ¡Ôñ²»ÉúÓý¶þÌ¥µÄÈËÊý±ÈÀýͼ£¨ÈçͼËùʾ£©£¬ÆäÖÐÒõÓ°²¿·Ö±íʾÇãÏòÑ¡ÔñÉúÓý¶þÌ¥µÄ¶ÔÓ¦±ÈÀý£¬ÔòÏÂÁÐÐðÊöÖдíÎóµÄÊÇ£¨¡¡¡¡£©
A£®ÊÇ·ñÇãÏòÑ¡ÔñÉúÓý¶þÌ¥Óë»§¼®ÎÞ¹Ø
B£®ÊÇ·ñÇãÏòÑ¡ÔñÉúÓý¶þÌ¥ÓëÐÔ±ðÎÞ¹Ø
C£®ÇãÏòÑ¡ÔñÉúÓý¶þÌ¥µÄÈËÔ±ÖУ¬ÄÐÐÔÈËÊýÓëÅ®ÐÔÈËÊýÏàͬ
D£®ÇãÏòÑ¡Ôñ²»ÉúÓý¶þÌ¥µÄÈËÔ±ÖУ¬Å©´å»§¼®ÈËÊýÉÙÓÚ³ÇÕò»§¼®ÈËÊý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=$\sqrt{3}$cos2x+sin2x£®
£¨1£©Èô¦Á£¨¦Á¡Ê[0£¬¦Ð]£©Îªº¯Êýf£¨x£©µÄÁãµã£¬Çó¦ÁµÄÖµ£»
£¨2£©Çóº¯Êýf£¨x£©µÄ×îСÕýÖÜÆÚºÍÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªf£¨x£©=$\left\{\begin{array}{l}{£¨\frac{1}{2}£©^{x-1}£¬x¡Ü0}\\{lo{g}_{\frac{1}{3}}x£¬x£¾0}\end{array}\right.$£¬ÇÒf£¨a-3£©=0£¬Ôòa=4£¬²»µÈʽf£¨x£©£¾aµÄ½â¼¯Îª{x|x£¼-1»ò0£¼x£¼$\frac{1}{81}$}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªÊýÁÐ{an}ÖУ¬a1=-1£¬an+1=an+n£¬ÈôÀûÓÃÈçͼËùʾµÄ³ÌÐò¿òͼ¼ÆËã¸ÃÊýÁеĵÚ2016ÏÔòÅжϿòÄÚµÄÌõ¼þÊÇ£¨¡¡¡¡£©
A£®n¡Ü2014£¿B£®n¡Ü2015£¿C£®n¡Ü2016£¿D£®n¡Ü2017£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÔÚ¡÷ABCÖУ¬a£¬b£¬c·Ö±ðÊÇÈýÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß£¬ÇÒ3cosB=2sin£¨$\frac{¦Ð}{3}$+A£©•sin£¨$\frac{¦Ð}{3}$-A£©+2sin2A£®
£¨1£©Çó½ÇBµÄÖµ£»
£¨2£©Èôb=2$\sqrt{3}$£¬ÇóÈý½ÇÐÎABCÖܳ¤µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑ$\overrightarrow{a}$Óë$\overrightarrow b$µÄ¼Ð½ÇΪ120¡ã£¬Èô$£¨\overrightarrow a+\overrightarrow b£©¡Í£¨\overrightarrow a-\overrightarrow b£©$£¬ÇÒ$|\overrightarrow a|=2$£¬$\overrightarrow{b}$ÔÚ$\overrightarrow{a}$·½ÏòÉϵÄÕýÉäÓ°µÄÊýÁ¿Îª-1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸