·ÖÎö ·ÖÀàÌÖÂÛ£¬°´ÕÕ·½°¸Ò»£¬¶þµÄÒªÇó½øÐÐÌÖÂÛ£®
·½°¸Ò»£ºÁ¬OC£¬Éè$¡ÏPOC=x£¬x¡Ê£¨0£¬\frac{¦Ð}{4}£©$£¬Éè¾ØÐÎABCDµÄÃæ»ýΪy£¬Ôòy=AB•BC£¬Í¨¹ý´úÈ뻯¼ò£¬ÓÉÈý½Çº¯ÊýµÄ×îֵȷ¶¨µÄÌõ¼þ£¬¿ÉÒԵóö´ð°¸£»
·½°¸¶þ£º×÷¡ÏPOQµÄƽ·ÖÏß·Ö±ð½»EF£¬GHÓÚµãM£¬N£¬Á¬OE£®Éè$¡ÏMOE=¦Á£¬¦Á¡Ê£¨0£¬\frac{¦Ð}{6}£©$£¬Éè¾ØÐÎEFGHµÄÃæ»ýΪS£¬Çó³öSµÄʽ×Ó£¬ÓÉÈý½Çº¯ÊýµÄÐÔÖÊÇó³ö×îÖµ£®
×îºó£¬±È½Ï¶þÕß×î´óÖµµÄ´óС£¬Ñ¡³ö×î´óÖµ¼´¿ÉµÃ³ö´ð°¸£®
½â´ð ½â£º°´·½°¸Ò»£ºÈçͼ£¬Á¬OC£¬Éè$¡ÏPOC=x£¬x¡Ê£¨0£¬\frac{¦Ð}{4}£©$£¬![]()
ÔÚRt¡÷OBCÖУ¬BC=Rsinx£¬OB=Rcosx£¬ÔòDA=Rsinx
ÔÚRt¡÷OADÖУ¬$\frac{DA}{OA}=tan\frac{¦Ð}{3}$£¬µÃ$OA=\frac{{\sqrt{3}}}{3}DA=\frac{{\sqrt{3}}}{3}Rsinx$£¬
Ôò$AB=OB-OA=R£¨cosx-\frac{{\sqrt{3}}}{3}sinx£©$£¬Éè¾ØÐÎABCDµÄÃæ»ýΪy£¬Ôò
y=AB•BC=${R}^{2}£¨sinxcosx-\frac{\sqrt{3}}{3}si{n}^{2}x£©$=$\frac{\sqrt{3}}{3}$sin£¨2x+$\frac{¦Ð}{6}$£©-$\frac{\sqrt{3}}{6}$£¬
ÓÉ$x¡Ê£¨0£¬\frac{¦Ð}{3}£©$µÃ$\frac{¦Ð}{6}£¼2x+\frac{¦Ð}{6}£¼\frac{5¦Ð}{6}$£®
ËùÒÔµ±$2x+\frac{¦Ð}{6}=\frac{¦Ð}{2}$£¬¼´$x=\frac{¦Ð}{6}$ʱ${y_{max}}=£¨\frac{{\sqrt{3}}}{3}-\frac{{\sqrt{3}}}{6}£©{R^2}=\frac{{\sqrt{3}}}{6}{R^2}$£®
°´·½°¸¶þ£ºÈçͼ×÷¡ÏPOQµÄƽ·ÖÏß·Ö±ð½»EF£¬GHÓÚµãM£¬N£¬Á¬OE£®![]()
Éè$¡ÏMOE=¦Á£¬¦Á¡Ê£¨0£¬\frac{¦Ð}{6}£©$£¬ÔÚRt¡÷MOEÖУ¬ME=Rsin¦Á£¬OM=Rcos¦Á
ÔÚRt¡÷ONHÖУ¬$\frac{NH}{ON}=tan\frac{¦Ð}{6}$£¬µÃ$ON=\sqrt{3}NH=\sqrt{3}Rsin¦Á$£¬
Ôò$MN=OM-ON=R£¨cos¦Á-\sqrt{3}sin¦Á£©$£¬Éè¾ØÐÎEFGHµÄÃæ»ýΪS£¬
ÔòS=2ME•MN=2R2sin¦Á£¨cos¦Á-$\sqrt{3}$sin¦Á£©=R2£¨sin2¦Á+$\sqrt{3}$cos2¦Á-$\sqrt{3}$£©=$2{R^2}sin£¨2¦Á+\frac{¦Ð}{3}£©-\sqrt{3}{R^2}$
ÓÉ$¦Á¡Ê£¨0£¬\frac{¦Ð}{6}£©$£¬Ôò$\frac{¦Ð}{3}£¼2¦Á+\frac{¦Ð}{3}£¼\frac{2¦Ð}{3}$£¬ËùÒÔµ±$2¦Á+\frac{¦Ð}{3}=\frac{¦Ð}{2}$£¬¼´$¦Á=\frac{¦Ð}{12}$ʱ${S_{max}}=£¨2-\sqrt{3}£©{R^2}$¡ß$\frac{{\sqrt{3}}}{6}-2+\sqrt{3}=\frac{{7\sqrt{3}-12}}{6}£¾0$£¬¼´ymax£¾Smax
´ð£º¸ø·¿²úÉÌÌá³ö¾ö²ß½¨Ò飺ѡÓ÷½°¸Ò»¸üºÃ£®
µãÆÀ ±¾Ì⿼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬¿¼²éѧÉúµÄת»¯ÄÜÁ¦£¬ÒÔ¼°ÔËÓÃÈý½Ç֪ʶ½øÐÐÇó½âʵ¼ÊÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | 6 | C£® | 2»ò1 | D£® | 2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 3 | B£® | -3 | C£® | 6 | D£® | -6 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ÊÇ·ñÇãÏòÑ¡ÔñÉúÓý¶þÌ¥Óë»§¼®ÎÞ¹Ø | |
| B£® | ÊÇ·ñÇãÏòÑ¡ÔñÉúÓý¶þÌ¥ÓëÐÔ±ðÎÞ¹Ø | |
| C£® | ÇãÏòÑ¡ÔñÉúÓý¶þÌ¥µÄÈËÔ±ÖУ¬ÄÐÐÔÈËÊýÓëÅ®ÐÔÈËÊýÏàͬ | |
| D£® | ÇãÏòÑ¡Ôñ²»ÉúÓý¶þÌ¥µÄÈËÔ±ÖУ¬Å©´å»§¼®ÈËÊýÉÙÓÚ³ÇÕò»§¼®ÈËÊý |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | n¡Ü2014£¿ | B£® | n¡Ü2015£¿ | C£® | n¡Ü2016£¿ | D£® | n¡Ü2017£¿ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com