精英家教网 > 高中数学 > 题目详情
18.已知向量$\overrightarrow m=(a,-2),\overrightarrow n=(a-3,1)$,且$\overrightarrow{m}$∥$\overrightarrow{n}$,则实数a=(  )
A.1B.6C.2或1D.2

分析 根据平面向量的共线定理,列出方程求解即可.

解答 解:向量$\overrightarrow m=(a,-2),\overrightarrow n=(a-3,1)$,且$\overrightarrow{m}$∥$\overrightarrow{n}$,
∴a-(-2)•(a-3)=0,
解得a=2.
故选:D.

点评 本题考查了平面向量的坐标表示与共线定理的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知复数z=$\frac{a+i}{2}$(a∈R)且z的实部与虚部互为相反数,则a的值为(  )
A.1B.aC.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知A,B是单位圆上的两点,O为圆心,且∠AOB=120°,MN是圆O的一条直径,点C在圆内,且满足$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$(λ∈R),则$\overrightarrow{CM}$•$\overrightarrow{CN}$的最小值为(  )
A.-$\frac{1}{2}$B.-$\frac{1}{4}$C.-$\frac{3}{4}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点A(0,-1),且离心率为$\frac{\sqrt{2}}{2}$.
(1)求a的值;
(2)经过点(1,1),且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于点A),证明:直线AP与AQ的斜率之和为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知命题p为真命题,命题q为假命题,则下列命题为真命题的是(  )
A.¬pB.p∧qC.¬p∨qD.p∨q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.有甲、乙两个班,进行数学考试,按学生考试及格与不及格统计成绩后,得到如下的列联表.能否在犯错误的概率不超过0.01的前提下认为成绩及格与班级有关系?
不及格及格总计
甲班103545
乙班73845
总计177390
K2=$\frac{n(ad-bc)^{2}}{(a+d)(c+d)(a+c)(b+d)}$
依据表
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
   k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)的定义域为实数R,f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^x}-1,-1≤x<0\\{log_2}(x+1),0≤x<3.\end{array}$对任意的x∈R都有f(x+2)=f(x-2).若在区间[-5,3]上函数g(x)=f(x)-mx+m恰好有三个不同的零点,则实数m的取值范围是(  )
A.$(-\frac{1}{2},-\frac{1}{6})$B.$[-\frac{1}{2},-\frac{1}{6})$C.$(-\frac{1}{2},-\frac{1}{3})$D.$[-\frac{1}{2},-\frac{1}{3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知(x+$\frac{1}{2}$)n的展开式中前三项的系数成等差数列,设(x+$\frac{1}{2}$)n=a0+a1x+a2x2+…+anxn,求:
(1)a0-a1+a2-a3+…+(-1)nan的值;
(2)ai(i=0,1,2,…,n)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.一房产商竞标得一块扇形OPQ地皮,其圆心角∠POQ=$\frac{π}{3}$,半径为R=200m,房产商欲在此地皮上修建一栋平面图为矩形的商住楼,为使得地皮的使用率最大,准备了两种设计方案如图,方案一:矩形ABCD的一边AB在半径OP上,C在圆弧上,D在半径OQ;方案二:矩形EFGH的顶点在圆弧上,顶点G,H分别在两条半径上.请你通过计算,为房产商提供决策建议.

查看答案和解析>>

同步练习册答案