精英家教网 > 高中数学 > 题目详情
9.已知A,B是单位圆上的两点,O为圆心,且∠AOB=120°,MN是圆O的一条直径,点C在圆内,且满足$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$(λ∈R),则$\overrightarrow{CM}$•$\overrightarrow{CN}$的最小值为(  )
A.-$\frac{1}{2}$B.-$\frac{1}{4}$C.-$\frac{3}{4}$D.-1

分析 根据题意可知C在线段AB上,从而得出|$\overrightarrow{OC}$|的范围,用$\overrightarrow{OM}$,$\overrightarrow{ON}$,$\overrightarrow{OC}$表示出$\overrightarrow{CM},\overrightarrow{CN}$,代入数量积公式得出关于|$\overrightarrow{OC}$|的式子,根据|$\overrightarrow{OC}$|的范围得出答案.

解答 解:∵$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$,
∴点C在线段AB上,即A,B,C三点共线.
∵OA=OB=1,∠AOB=120°,
∴O到直线AB的距离d=$\frac{1}{2}$.
∴$\frac{1}{2}≤$|$\overrightarrow{OC}$|<1.
∴$\overrightarrow{CM}$•$\overrightarrow{CN}$=($\overrightarrow{OM}-\overrightarrow{OC}$)•($\overrightarrow{ON}-\overrightarrow{OC}$)=$\overrightarrow{OM}•\overrightarrow{ON}$-($\overrightarrow{OM}+\overrightarrow{ON}$)$•\overrightarrow{OC}$+${\overrightarrow{OC}}^{2}$.
∵MN是单位圆O的直径,
∴$\overrightarrow{OM}•\overrightarrow{ON}$=-1,$\overrightarrow{OM}+\overrightarrow{ON}$=$\overrightarrow{0}$,
∴$\overrightarrow{CM}$•$\overrightarrow{CN}$=-1+${\overrightarrow{OC}}^{2}$.
∴-$\frac{3}{4}$≤$\overrightarrow{CM}$•$\overrightarrow{CN}$<0.
则$\overrightarrow{CM}$•$\overrightarrow{CN}$的最小值为-$\frac{3}{4}$,
故选:C.

点评 本题考查了平面向量的数量积运算,向量线性运算的性质与几何意义,利用数形结合以及转化法是解决本题的关键.属于中档题.本题也可以使用坐标法进行求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.某学校男子篮球运动队由12名队员组成,每个运动员身高均在180cm到210cm之间,一一测得身高后得到如下所示的频数分布表:
身高(单位:cm)[180,185)[185,190)[190,195)[195,200)[200,205)[205,210]
人数233211
(I)试估计该运动队身高的平均值;
(Ⅱ)从中选5人参加比赛,求身高在200cm以上的人数X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若sin(α-$\frac{7π}{4}$)=$\frac{1}{2}$,则cos($\frac{π}{4}$-α)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.现有4种不同的颜色为公民基本道德规范四个主题词(如图)涂色,要求相邻的词语涂色不同,则不同的涂法种数为(  )
A.27B.54C.108D.144

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知点A为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$右支上一点,F1,F2为双曲线的左右焦点,AF1交双曲线左支于点B,若AB=BF2,则$\frac{{|{A{F_2}}|}}{{|{B{F_1}}|}}$=(  )
A.$\sqrt{2}$B.$\frac{3}{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在凸四边形ABCD中,C,D为定点,CD=$\sqrt{3}$,A,B为动点,满足AB=BC=DA=1.
(1)若C=$\frac{π}{4}$,求cosA;
(2)设△BCD和△ABD的面积分别为S和T,求S2+T2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.四边形ABCD是边长为1的正方形,则|$\overrightarrow{AB}$-$\overrightarrow{AD}$|=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow m=(a,-2),\overrightarrow n=(a-3,1)$,且$\overrightarrow{m}$∥$\overrightarrow{n}$,则实数a=(  )
A.1B.6C.2或1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a1=3,a2=6且an+2=an+1-an,则a3为(  )
A.3B.-3C.6D.-6

查看答案和解析>>

同步练习册答案