精英家教网 > 高中数学 > 题目详情
19.已知a1=3,a2=6且an+2=an+1-an,则a3为(  )
A.3B.-3C.6D.-6

分析 由递推公式得a3=a2-a1,由此能求出结果.

解答 解:∵a1=3,a2=6,且an+2=an+1-an
∴a3=a2-a1=6-3=3.
故选:A.

点评 本题考查数列的第3项的求法,是基础题,解题时要认真审题,注意数列的递推公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知A,B是单位圆上的两点,O为圆心,且∠AOB=120°,MN是圆O的一条直径,点C在圆内,且满足$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$(λ∈R),则$\overrightarrow{CM}$•$\overrightarrow{CN}$的最小值为(  )
A.-$\frac{1}{2}$B.-$\frac{1}{4}$C.-$\frac{3}{4}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)的定义域为实数R,f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^x}-1,-1≤x<0\\{log_2}(x+1),0≤x<3.\end{array}$对任意的x∈R都有f(x+2)=f(x-2).若在区间[-5,3]上函数g(x)=f(x)-mx+m恰好有三个不同的零点,则实数m的取值范围是(  )
A.$(-\frac{1}{2},-\frac{1}{6})$B.$[-\frac{1}{2},-\frac{1}{6})$C.$(-\frac{1}{2},-\frac{1}{3})$D.$[-\frac{1}{2},-\frac{1}{3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知(x+$\frac{1}{2}$)n的展开式中前三项的系数成等差数列,设(x+$\frac{1}{2}$)n=a0+a1x+a2x2+…+anxn,求:
(1)a0-a1+a2-a3+…+(-1)nan的值;
(2)ai(i=0,1,2,…,n)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ax-$\frac{1}{2}$x2-aln(x+1)(a>0),g(x)=ex-x-1,曲线y=f(x)与y=g(x)在原点处的公共的切线.
(1)若x=0为函数f(x)的极大值点,求f(x)的单调区间(用a表示);
(2)若?x≥0,g(x)≥f(x)+$\frac{1}{2}$x2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.命题:
(1)夹在两平行平面间的两个几何体,被一个平行于这两个平面的平面所截,若截得两个截面的面积总相等,则这两个几何体的体积出相等;
(2)直棱柱和圆柱侧面展开图都是矩形;
(3)斜棱柱的体积等于与它的一条侧棱垂直的截面面积乘以它的一条侧棱;
(4)平行六面体的对角线交于一点,且互相平分;
其中正确的个数是(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等差数列{an}中,公差d>0,其前n项和为Sn,且满足a2•a3=45,a1+a4=14.
(1)求数列an的通项公式;
(2)设由bn=$\frac{S_n}{n+c}$(c≠0)构成的新数列为bn,求证:当且仅当c=-$\frac{1}{2}$时,数列bn是等差数列;
(3)对于(2)中的等差数列bn,设cn=$\frac{8}{{({a_n}+7)•{b_n}}}$(n∈N*),数列{cn}的前n项和为Tn,现有数列{f(n)},f(n)=Tn•(an+3-$\frac{8}{{b}_{n}}$)•0.9n(n∈N*),是否存在整数M,使f(n)<M对一切n∈N*都成立?若存在,求出M的最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.一房产商竞标得一块扇形OPQ地皮,其圆心角∠POQ=$\frac{π}{3}$,半径为R=200m,房产商欲在此地皮上修建一栋平面图为矩形的商住楼,为使得地皮的使用率最大,准备了两种设计方案如图,方案一:矩形ABCD的一边AB在半径OP上,C在圆弧上,D在半径OQ;方案二:矩形EFGH的顶点在圆弧上,顶点G,H分别在两条半径上.请你通过计算,为房产商提供决策建议.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设F1,F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,点M(a,b),∠MF1F2=30°,则双曲线的离心率为(  )
A.4B.$\sqrt{3}$C.$\sqrt{2}$D.2

查看答案和解析>>

同步练习册答案