16£®ÎªÁ˽⻧¼®ÓëÐÔ±ð¶ÔÉúÓý¶þ̥ѡÔñÇãÏòµÄÓ°Ï죬ijµØ´ÓÓýÁäÈËȺÖÐËæ»ú³éÈ¡ÁËÈÝÁ¿Îª100µÄµ÷²éÑù±¾£®ÆäÖУº³ÇÕò»§¼®ÓëÅ©´å»§¼®¸÷50ÈË£»ÄÐÐÔ60ÈË£¬Å®ÐÔ40ÈË£®»æÖƲ»Í¬ÈºÌåÖÐÇãÏòÑ¡ÔñÉúÓý¶þÌ¥ÓëÇãÏòÑ¡Ôñ²»ÉúÓý¶þÌ¥µÄÈËÊý±ÈÀýͼ£¨ÈçͼËùʾ£©£¬ÆäÖÐÒõÓ°²¿·Ö±íʾÇãÏòÑ¡ÔñÉúÓý¶þÌ¥µÄ¶ÔÓ¦±ÈÀý£¬ÔòÏÂÁÐÐðÊöÖдíÎóµÄÊÇ£¨¡¡¡¡£©
A£®ÊÇ·ñÇãÏòÑ¡ÔñÉúÓý¶þÌ¥Óë»§¼®ÎÞ¹Ø
B£®ÊÇ·ñÇãÏòÑ¡ÔñÉúÓý¶þÌ¥ÓëÐÔ±ðÎÞ¹Ø
C£®ÇãÏòÑ¡ÔñÉúÓý¶þÌ¥µÄÈËÔ±ÖУ¬ÄÐÐÔÈËÊýÓëÅ®ÐÔÈËÊýÏàͬ
D£®ÇãÏòÑ¡Ôñ²»ÉúÓý¶þÌ¥µÄÈËÔ±ÖУ¬Å©´å»§¼®ÈËÊýÉÙÓÚ³ÇÕò»§¼®ÈËÊý

·ÖÎö ÓɱÈÀýͼ£¬¿ÉµÃÊÇ·ñÇãÏòÑ¡ÔñÉúÓý¶þÌ¥Óë»§¼®¡¢ÐÔ±ðÓйأ¬ÇãÏòÑ¡Ôñ²»ÉúÓý¶þÌ¥µÄÈËÔ±ÖУ¬Å©´å»§¼®ÈËÊýÉÙÓÚ³ÇÕò»§¼®ÈËÊý£¬ÇãÏòÑ¡ÔñÉúÓý¶þÌ¥µÄÈËÔ±ÖеÄÄÐÐÔÈËÊýÓëÅ®ÐÔÈËÊý£¬¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£ºÓɱÈÀýͼ£¬¿ÉµÃÊÇ·ñÇãÏòÑ¡ÔñÉúÓý¶þÌ¥Óë»§¼®¡¢ÐÔ±ðÓйأ¬
ÇãÏòÑ¡Ôñ²»ÉúÓý¶þÌ¥µÄÈËÔ±ÖУ¬Å©´å»§¼®ÈËÊýÉÙÓÚ³ÇÕò»§¼®ÈËÊý£¬
ÇãÏòÑ¡ÔñÉúÓý¶þÌ¥µÄÈËÔ±ÖУ¬ÄÐÐÔÈËÊýΪ0.6¡Á60=36£¬Å®ÐÔÈËÊý0.4¡Á60=24£¬²»Ïàͬ£®
¹ÊÑ¡£ºD

µãÆÀ ±¾Ì⿼²é±ÈÀýͼ£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÕýÈ·Àí½â±ÈÀýͼÊǹؼü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬ÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¾­¹ýµãA£¨0£¬-1£©£¬ÇÒÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£®
£¨1£©ÇóaµÄÖµ£»
£¨2£©¾­¹ýµã£¨1£¬1£©£¬ÇÒбÂÊΪkµÄÖ±ÏßÓëÍÖÔ²E½»ÓÚ²»Í¬µÄÁ½µãP£¬Q£¨¾ùÒìÓÚµãA£©£¬Ö¤Ã÷£ºÖ±ÏßAPÓëAQµÄбÂÊÖ®ºÍΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖª£¨x+$\frac{1}{2}$£©nµÄÕ¹¿ªÊ½ÖÐǰÈýÏîµÄϵÊý³ÉµÈ²îÊýÁУ¬É裨x+$\frac{1}{2}$£©n=a0+a1x+a2x2+¡­+anxn£¬Çó£º
£¨1£©a0-a1+a2-a3+¡­+£¨-1£©nanµÄÖµ£»
£¨2£©ai£¨i=0£¬1£¬2£¬¡­£¬n£©µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÃüÌ⣺
£¨1£©¼ÐÔÚÁ½Æ½ÐÐÆ½Ãæ¼äµÄÁ½¸ö¼¸ºÎÌ壬±»Ò»¸öƽÐÐÓÚÕâÁ½¸öÆ½ÃæµÄÆ½ÃæËù½Ø£¬Èô½ØµÃÁ½¸ö½ØÃæµÄÃæ»ý×ÜÏàµÈ£¬ÔòÕâÁ½¸ö¼¸ºÎÌåµÄÌå»ý³öÏàµÈ£»
£¨2£©Ö±ÀâÖùºÍÔ²Öù²àÃæÕ¹¿ªÍ¼¶¼ÊǾØÐΣ»
£¨3£©Ð±ÀâÖùµÄÌå»ýµÈÓÚÓëËüµÄÒ»Ìõ²àÀâ´¹Ö±µÄ½ØÃæÃæ»ý³ËÒÔËüµÄÒ»Ìõ²àÀ⣻
£¨4£©Æ½ÐÐÁùÃæÌåµÄ¶Ô½ÇÏß½»ÓÚÒ»µã£¬ÇÒ»¥ÏàÆ½·Ö£»
ÆäÖÐÕýÈ·µÄ¸öÊýÊÇ£¨¡¡¡¡£©
A£®4¸öB£®3¸öC£®2¸öD£®1¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªµÈ²îÊýÁÐ{an}ÖУ¬¹«²îd£¾0£¬ÆäǰnÏîºÍΪSn£¬ÇÒÂú×ãa2•a3=45£¬a1+a4=14£®
£¨1£©ÇóÊýÁÐanµÄͨÏʽ£»
£¨2£©ÉèÓÉbn=$\frac{S_n}{n+c}$£¨c¡Ù0£©¹¹³ÉµÄÐÂÊýÁÐΪbn£¬ÇóÖ¤£ºµ±ÇÒ½öµ±c=-$\frac{1}{2}$ʱ£¬ÊýÁÐbnÊǵȲîÊýÁУ»
£¨3£©¶ÔÓÚ£¨2£©ÖеĵȲîÊýÁÐbn£¬Éècn=$\frac{8}{{£¨{a_n}+7£©•{b_n}}}$£¨n¡ÊN*£©£¬ÊýÁÐ{cn}µÄǰnÏîºÍΪTn£¬ÏÖÓÐÊýÁÐ{f£¨n£©}£¬f£¨n£©=Tn•£¨an+3-$\frac{8}{{b}_{n}}$£©•0.9n£¨n¡ÊN*£©£¬ÊÇ·ñ´æÔÚÕûÊýM£¬Ê¹f£¨n£©£¼M¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öMµÄ×îСֵ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=cos¦Ásinx+$\frac{3}{5}$cosx+1£¬¦ÁΪ³£Êý£¬¦Á¡Ê[$\frac{3¦Ð}{2}$£¬2¦Ð]£¬ÇÒf£¨$\frac{3¦Ð}{2}$£©=$\frac{1}{5}$£®
£¨1£©Çósin¦ÁºÍcos2¦ÁµÄÖµ£»
£¨2£©Çóf£¨x£©µÄ×î´óÖµ¡¢×îСֵ¼°×îСÕýÖÜÆÚ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Ò»·¿²úÉ̾º±êµÃÒ»¿éÉÈÐÎOPQµØÆ¤£¬ÆäÔ²ÐĽǡÏPOQ=$\frac{¦Ð}{3}$£¬°ë¾¶ÎªR=200m£¬·¿²úÉÌÓûÔÚ´ËµØÆ¤ÉÏÐÞ½¨Ò»¶°Æ½ÃæÍ¼Îª¾ØÐεÄÉÌס¥£¬ÎªÊ¹µÃµØÆ¤µÄʹÓÃÂÊ×î´ó£¬×¼±¸ÁËÁ½ÖÖÉè¼Æ·½°¸Èçͼ£¬·½°¸Ò»£º¾ØÐÎABCDµÄÒ»±ßABÔÚ°ë¾¶OPÉÏ£¬CÔÚÔ²»¡ÉÏ£¬DÔÚ°ë¾¶OQ£»·½°¸¶þ£º¾ØÐÎEFGHµÄ¶¥µãÔÚÔ²»¡ÉÏ£¬¶¥µãG£¬H·Ö±ðÔÚÁ½Ìõ°ë¾¶ÉÏ£®ÇëÄãͨ¹ý¼ÆË㣬Ϊ·¿²úÉÌÌṩ¾ö²ß½¨Ò飮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$µÄÍÖÔ²E£º$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©¾­¹ýµãA£¨1£¬$\frac{{\sqrt{2}}}{2}$£©£®
£¨1£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨2£©Èô²»¹ýµãAµÄÖ±Ïßl£ºy=$\frac{{\sqrt{2}}}{2}$x+m½»ÍÖÔ²EÓÚB£¬CÁ½µã£¬Çó¡÷ABCÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖª¼¯ºÏA={x¡ÊR||x+2|£¼3}£¬¼¯ºÏB={x¡ÊR|£¨x-m£©£¨x-2£©£¼0}£¬ÇÒA¡ÉB={x|-1£¼x£¼n}£¬Ôòm=-1£¬n=1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸