精英家教网 > 高中数学 > 题目详情
3.已$\overrightarrow{a}$与$\overrightarrow b$的夹角为120°,若$(\overrightarrow a+\overrightarrow b)⊥(\overrightarrow a-\overrightarrow b)$,且$|\overrightarrow a|=2$,$\overrightarrow{b}$在$\overrightarrow{a}$方向上的正射影的数量为-1.

分析 根据向量数量积的关系进行化简,结合向量投影的定义进行求解即可.

解答 解:∵$\overrightarrow{a}$与$\overrightarrow b$的夹角为120°,若$(\overrightarrow a+\overrightarrow b)⊥(\overrightarrow a-\overrightarrow b)$,且$|\overrightarrow a|=2$,
∴($\overrightarrow{a}$+$\overrightarrow b$)•($\overrightarrow{a}$-$\overrightarrow b$)=0,即$\overrightarrow{a}$2=$\overrightarrow b$2,则|$\overrightarrow{a}$|=|$\overrightarrow b$|=2,
则$\overrightarrow{a}$•$\overrightarrow b$=|$\overrightarrow{a}$||$\overrightarrow b$|cos120°=$-\frac{1}{2}×2×2$=-2,
则$\overrightarrow{b}$在$\overrightarrow{a}$方向上的正射影为$\frac{\overrightarrow{b}•\overrightarrow{a}}{|\overrightarrow{a}|}$=$\frac{-2}{2}=-1$,
故答案为:-1

点评 本题主要考查向量数量积的应用,根据向量垂直求出$\overrightarrow{a}$•$\overrightarrow b$以及利用向量射影的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.一房产商竞标得一块扇形OPQ地皮,其圆心角∠POQ=$\frac{π}{3}$,半径为R=200m,房产商欲在此地皮上修建一栋平面图为矩形的商住楼,为使得地皮的使用率最大,准备了两种设计方案如图,方案一:矩形ABCD的一边AB在半径OP上,C在圆弧上,D在半径OQ;方案二:矩形EFGH的顶点在圆弧上,顶点G,H分别在两条半径上.请你通过计算,为房产商提供决策建议.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设F1,F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,点M(a,b),∠MF1F2=30°,则双曲线的离心率为(  )
A.4B.$\sqrt{3}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B={x|-1<x<n},则m=-1,n=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知定义在R上的函数f(x)的导函数为f′(x),若f(x)=f′(1)x2+2x,则f(1)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知奇函数y=$\left\{\begin{array}{l}{{a}^{x},x>0}\\{f(x),x<0}\end{array}\right.$(a>0且a≠1)的部分图象如图所示,那么f(x)=(  )
A.2xB.$-{(\frac{1}{2})^x}$C.${({\frac{1}{2}})^x}$D.-2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若集合A={x|x>-1},则(  )
A.0⊆AB.{0}⊆AC.{0}∈AD.∅∈A

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知α,β都是锐角,且tan(α-β)=$\frac{1}{2},tanβ=\frac{1}{3}$,则α=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知${∫}_{0}^{2}$ f(x)dx=3,则${∫}_{0}^{2}$[f(x)+6]dx等于(  )
A.9B.12C.15D.18

查看答案和解析>>

同步练习册答案