精英家教网 > 高中数学 > 题目详情
(2010•江苏二模)三次函数y=x3-x2-ax+b在(0,1)处的切线方程为y=2x+1,则a+b=
-1
-1
分析:欲求a+b值,利用在点(0,1)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=0处的导函数值,再结合导数的几何意义即可求出切线的斜率,最后列出关于a,b的等式.从而问题解决.
解答:解:∵y=x3-x2-ax+b,
∴y'=3x2-2x-a,当x=0时,y'=-a得切线的斜率为-a,
所以-a=2,a=-2,
又y=x3-x2-ax+b过(0,1),
∴b=1,
∴a+b=-2+1=-1.
故答案为:-1.
点评:本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•江苏二模)已知函数f(x)是定义在(0,+∞)上的单调增函数,当n∈N*时,f(n)∈N*,若f[f(n)]=3n,则f(5)的值等于
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•江苏二模)如图是一块长方形区域ABCD,AD=2(km),AB=1(km).在边AD的中点O处,有一个可转动的探照灯,其照射角∠EOF始终为
π
4
,设∠AOE=α(0≤α≤
4
),探照灯O照射在长方形ABCD内部区域的面积为S.
(1)当0≤α<
π
2
时,写出S关于α的函数表达式;
(2)当0≤α≤
π
4
时,求S的最大值.
(3)若探照灯每9分钟旋转“一个来回”(OE自OA转到OC,再回到OA,称“一个来回”,忽略OE在OA及OC反向旋转时所用时间),且转动的角速度大小一定,设AB边上有一点G,且∠AOG=
π
6
,求点G在“一个来回”中,被照到的时间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•江苏二模)函数y=sinx+
3
cosx
(x∈R)的值域为
[-2,2]
[-2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•江苏二模)满足sin
π
5
sinx+cos
5
cosx=
1
2
的锐角x=
15
15

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•江苏二模)在等腰△ABC中,已知AB=AC,B(-1,0),D(2,0)为AC的中点.
(1)求点C的轨迹方程;
(2)已知直线l:x+y-4=0,求边BC在直线l上的投影EF长的最大值.

查看答案和解析>>

同步练习册答案