精英家教网 > 高中数学 > 题目详情
4.已知球面上四点A、B、C、D满足AB、AC、AD两两互相垂直,且AB=1,AC=$\sqrt{2}$,AD=$\sqrt{3}$,则该球的表面积是(  )
A.B.C.D.

分析 由题意,A、B、C、D在球面上,AB、AC、AD两两互相垂直,可看成是长方体的一个顶角.长,宽,高分别看成是AB=1,AC=$\sqrt{2}$,AD=$\sqrt{3}$即可求该球的半径,可得该球的表面积.

解答 解:由题意,长方体的长,宽,高分别是AB=1,AC=$\sqrt{2}$,AD=$\sqrt{3}$.
那么外接球的半径R=$\frac{1}{2}×$a2+b2+c2=$\frac{\sqrt{6}}{2}$.
∴该球的表面积S=4πR2=6π.
故选:C.

点评 本题考查球的表面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$=(4,-3),|$\overrightarrow{b}$|=3,若向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{2π}{3}$,则|2$\overrightarrow{a}$+3$\overrightarrow{b}$|=$\sqrt{91}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=x2,定义数列{an}如下:an+1=f(an),n∈N*,若给定a1的值,得到无穷数列{an}满足:对任意正整数n,均有an+1>an,则a1的取值范围是(  )
A.(-∞,-1)∪(1,+∞)B.(-∞,0)∪(1,+∞)C.(1,+∞)D.(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=$\frac{sinA+sinB}{cosAcosB}$.
(1)证明:a,c,b成等差数列;
(2)求cosC的最小值..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数F(x)=ex(e=2.71828…)满足F(x)=g(x)+h(x),且g(x),h(x)分别是R上的偶函数和奇函数.
(1)求g(x),h(x)的表达式;
(2)若任意x∈[1,2]使得不等式aex-2h(x)≥1恒成立,求实数a的取值范围;
(3)探究h(2x)与2h(x)•g(x)的大小关系,并求$\frac{{2}^{n}g(1)g(2)g({2}^{2})…g({2}^{n-1})}{h({2}^{n})}$(n∈N*)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=a{x^2}-\frac{1}{2}x+c$(a、c∈R),满足f(1)=0,$f(0)=\frac{1}{4}$成立.
(1)求a、c的值;
(2)若h(x)=$\frac{3}{4}{x}^{2}$$-bx+\frac{b}{2}-\frac{1}{4}$,解不等式f(x)+h(x)<0;
(3)是否存在实数m,使函数g(x)=f(x)-mx在区间[m,m+2]上有最小值-5?若存在,请求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若幂函数f(x)=(a2-7a+13)xa+1为奇函数,则实数a=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足:|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=6,$\overrightarrow{a}$•($\overrightarrow{b}$-$\overrightarrow{a}$)=2.
(1)求向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角;
(2)求|2$\overrightarrow{a}$-$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.奇函数f(x)在区间[1,3]上是单调递减函数,则函数f(x)在区间[-3,-1]上是(  )
A.单调递减函数,且有最小值-f(1)B.单调递减函数,且有最大值-f(1)
C.单调递增函数,且有最小值f(1)D.单调递增函数,且有最大值f(1)

查看答案和解析>>

同步练习册答案