精英家教网 > 高中数学 > 题目详情
3.若幂函数f(x)=(a2-7a+13)xa+1为奇函数,则实数a=4.

分析 根据幂函数的性质可得a2-7a+13=1,f(x)为奇函数,则a+1是奇数,即可确定a的值.

解答 解:幂函数f(x)=(a2-7a+13)xa+1为奇函数,
∴a2-7a+13=1,
可得:a=3或4.
f(x)为奇函数,则a+1是奇数,
∴a=4.
故答案为:4.

点评 本题考查了幂函数的图象及性质的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.在△ABC中,∠BAC=90°,BC=5,D,E为边BC上的两点,且满足:$\overrightarrow{BD}=\frac{1}{3}\overrightarrow{BC},\overrightarrow{CE}=\frac{1}{3}\overrightarrow{CB}$,则$\overrightarrow{AD}•\overrightarrow{AE}$的值为$\frac{50}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列函数中,既为偶函数,又在(0,+∞)上单调递增的是(  )
A.y=x3B.y=2|x|C.y=|x+1|D.y=x-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知球面上四点A、B、C、D满足AB、AC、AD两两互相垂直,且AB=1,AC=$\sqrt{2}$,AD=$\sqrt{3}$,则该球的表面积是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.平面直面坐标系中,已知⊙C上的点P(2,2)关于直线2x+2y-7=0和2x-2y-1=0的对称点仍在⊙C上,A(-t,0),B(t,0)(t>0),若⊙C上存在点M,使∠AMB=90°,则t的取值范围为(  )
A.(0,2]B.[2,3]C.[4,6]D.[6,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数y=log${\;}_{\frac{1}{2}}$x,当y=-1时,x=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设数列{an}的前项n和为Sn,若对于任意的正整数n都有Sn=2an-3n,
(1)设bn=an+3,求证:数列{bn}是等比数列,并求出{an}的通项公式;
(2)求数列{nbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|2x2-7x-4≤0},B={x∈Z|x≤3},则A∩B中的元素个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.甲、乙两队进行一场排球比赛.根据以往经验,单局比赛甲队胜乙队的概率为0.5,本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛相互之间没有影响.用ξ表示本场比赛的局数,则ξ的数学期望为$\frac{33}{8}$.

查看答案和解析>>

同步练习册答案