精英家教网 > 高中数学 > 题目详情
11.已知二次函数f(x)=ax2-(a+2)x+1,若a 为整数,且函数f(x)在(-2,-1)上恰有一个零点,则a的值是(  )
A.-1B.1C.-2D.2

分析 由题意,分a的取值讨论,从而求a的取值范围,利用a为整数,即可得出a的值.

解答 解:①当a=0时,-2x+1=0,故x=$\frac{1}{2}$;
②当a<0时,函数f(x)=ax2-(a+2)x+1的零点一正一负,
故f(-2)•f(-1)=(6a+5)(2a+3)<0,
故-$\frac{3}{2}$<a<-$\frac{5}{6}$;
③当a>0时,ax2-(a+2)x+1=0的两根为正值,
故函数f(x)=ax2-(a+2)x+1在区间(-2,-1)上没有零点,
综上所述,-$\frac{3}{2}$<a<-$\frac{5}{6}$.
∵a 为整数,∴a=-1.
故选:A.

点评 本题考查了函数的零点与方程的根的关系应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数 f(x)=$\left\{\begin{array}{l}{-x+6,x≤2}\\{3+lo{g}_{a}x,x>2}\end{array}\right.$(a>0且a≠1)
(1)若a=2,解不等式f(x)≤5;
(2)若函数f(x)的值域是[4,+∞),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设f1(x)=cosx,定义fn+1(x)是fn(x)的导数,即fn+1(x)=fn′(x),n∈N*,若△ABC的内角A满足f1(A)+f2(A)+…+f2014(A)=0,则sinA=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=Asin(ωx+φ)$(A>0,\;|φ|<\frac{π}{2})$的图象如图所示,为了得到f(x)图象,则只需将g(x)=sin2x的图象(  )
A.向右平移$\frac{π}{6}$个长度单位B.向左平移$\frac{π}{6}$个长度单位
C.向右平移$\frac{π}{3}$个长度单位D.向左平移$\frac{π}{3}$个长度单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.直线L过点M(2,1),且分别与X,Y正半轴轴交于A,B两点.O为原点,
(1)求△AOB面积最小时直线L的方程
(2)|MA|•|MB|取最小值时L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=cos4x-2sinxcosx-sin4x.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.$\frac{{{{sin}^2}50°}}{1+sin10°}$=(  )
A.-1B.1C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{16}$=1(a>0)的一条渐近线方程为y=$\frac{4}{3}$x,则该双曲线的离心率为(  )
A.$\frac{4}{3}$B.$\frac{5}{3}$C.$\frac{5}{4}$D.$\frac{{\sqrt{7}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,直三棱柱ABC-A1B1C1的六个顶点都在半径为2的半球面上,AB=AC,侧面BCC1B1是半球底面圆的内接正方形,则侧面ABB1A1的面积为(  )
A.$4\sqrt{2}$B.$2\sqrt{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案