| A. | $\frac{4}{3}$ | B. | $\frac{5}{3}$ | C. | $\frac{5}{4}$ | D. | $\frac{{\sqrt{7}}}{4}$ |
分析 根据双曲线渐近线的方程求出a的值,结合双曲线离心率的公式进行求解即可.
解答 解:双曲线$\frac{x^2}{a^2}-\frac{y^2}{16}$=1(a>0)的渐近线方程为y=±$\frac{4}{a}$x,
∵双曲线的一条渐近线方程为y=$\frac{4}{3}$x,
∴$\frac{4}{a}$=$\frac{4}{3}$,即a=3,
则c=$\sqrt{{a}^{2}+16}=\sqrt{9+16}=\sqrt{25}$=5,
则双曲线的离心率e=$\frac{c}{a}$=$\frac{5}{3}$,
故选:B.
点评 本题主要考查双曲线离心率的计算,根据双曲线的渐近线求出a的值是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 1 | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分组 | [70,80) | [80,90) | [90,100) | [100,110) |
| 频数 | 3 | 4 | 7 | 14 |
| 分组 | [110,120) | [120,130) | [130,140) | [140,150] |
| 频数 | 17 | x | 4 | 2 |
| 分组 | [70,80) | [80,90) | [90,100) | [100,110) |
| 频数 | 1 | 2 | 8 | 9 |
| 分组 | [110,120) | [120,130) | [130,140) | [140,150] |
| 频数 | 10 | 10 | y | 4 |
| 甲校 | 乙校 | 总计 | |
| 优秀 | |||
| 非优秀 | |||
| 总计 |
| P(K2≥k0) | 0.10 | 0.05 | 0.010 |
| k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com