精英家教网 > 高中数学 > 题目详情
15.已知集合S={x|$\frac{x+2}{x-5}$<0},P={x|a+1<x<2a+15}
(Ⅰ)求集合S
(Ⅱ)若S∪P=P,求实数a的取值范围.

分析 (Ⅰ)将分式不等式等价转化为一元二次不等式,由一元二次不等式的解法求出集合S;
(Ⅱ)由S∪P=P得S⊆P,根据条件和子集之间的关系列出不等式组,求出实数a的取值范围.

解答 解:(Ⅰ)由$\frac{x+2}{x-5}<0$得(x+2)(x-5)<0,
解得-2<x<5,
∴集合S=(-2,5);
(Ⅱ)∵S∪P=P,∴S⊆P,
∵P={x|a+1<x<2a+15},∴$\left\{\begin{array}{l}{2a+15>a+1}\\{2a+15≥5}\\{a+1≤-2}\end{array}\right.$,
解得-5≤a≤-3,
∴实数a的取值范围是[-5,-3].

点评 本题考查了分式不等式和一元二次不等式的解法,并集及其运算,子集之间的关系,以及转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若以连续掷两枚骰子,分别得到的点数m,n作为点P的坐标,则点P落在圆x2+y2=16外的概率是$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.直线L过点M(2,1),且分别与X,Y正半轴轴交于A,B两点.O为原点,
(1)求△AOB面积最小时直线L的方程
(2)|MA|•|MB|取最小值时L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.$\frac{{{{sin}^2}50°}}{1+sin10°}$=(  )
A.-1B.1C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.用分数指数幂表示$\sqrt{{a^{\frac{1}{2}}}\sqrt{{a^{\frac{1}{2}}}\sqrt{a}}}$(a>0)其结果是(  )
A.aB.${a^{\frac{1}{2}}}$C.${a^{\frac{1}{4}}}$D.${a^{\frac{1}{6}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{16}$=1(a>0)的一条渐近线方程为y=$\frac{4}{3}$x,则该双曲线的离心率为(  )
A.$\frac{4}{3}$B.$\frac{5}{3}$C.$\frac{5}{4}$D.$\frac{{\sqrt{7}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某大学新闻系有男生45名,女生15名,按照分层抽样的方法组建了一个4人的青奥会采访小组.
(1)求某学生被抽到的概率及采访小组中男、女生的人数;
(2)经过半个月的实地采访,这个采访小组决定选出2名学生做后期整理编辑,方法是先从小组里选出1名学生对信息分类,该学生整理结束,再从小组内剩下的学生中选1名做后期剪辑,求选出的2名学生中恰有1名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.不等式logax>sin2x(a>0且a≠1)对任意$x∈(0,\frac{π}{4})$都成立,则a的取值范围为(  )
A.$(0,\frac{π}{4})$B.$[\frac{π}{4},1)$C.$(\frac{π}{4},1)∪(1,\frac{π}{2})$D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.由代数式的乘法法则类比推导向量的数量积的运算法则(  )
①“mn=nm”类比得到“$\overrightarrow a•\overrightarrow b=\overrightarrow b•\overrightarrow a$”;
②“(m+n)t=mt+nt”类比得到“$(\overrightarrow a+\overrightarrow b)•\overrightarrow c=\overrightarrow a•\overrightarrow c+\overrightarrow b•\overrightarrow c$”;
③“(mn)t=m(nt)”类比得到“$(\overrightarrow a•\overrightarrow b)•\overrightarrow c=\overrightarrow a•(\overrightarrow b•\overrightarrow c)$”
④“t≠0,mt=nt⇒m=n”类比得到“$\overrightarrow c≠\overrightarrow 0,\overrightarrow a•\overrightarrow c=\overrightarrow b•\overrightarrow c⇒\overrightarrow a=\overrightarrow b$”;
以上的式子中,类比得到的结论正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案