精英家教网 > 高中数学 > 题目详情
若f′(x)=2ex+xex(其中e为自然对数的底数),则f(x)可以是(  )
A.xex+xB.(x+1)ex+1C.xexD.(x+1)ex+x
利用导数的运算法则可得:A.(xex+x)′=ex+xex+1,
B.[(x+1)ex+1]=ex+(x+1)ex=(x+2)ex
C.(xex)′=ex+xex
D.[(x+1)ex+x]′=ex+(x+1)ex+1=(x+2)ex+1.
故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ln(x+1)+ax2-x,a∈R.
(1)当时,求函数y=f(x)的极值;
(2)是否存在实数b∈(0,1),使得当x∈(-1,b]时,函数f(x)的最大值为f(b)?若存在,求实数a的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数.
(1)当时,求的极值;
(2)若在区间上单调递增,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)=xsinx的导函数为f′(x),则f′(x)等于(  )
A.xsinx+xcosxB.xcosx-xsinx
C.sinx-xcosxD.sinx+xcosx

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=
1
3
x3-ax2-3a2x+1(a>0)

(I)求f′(x)的表达式;
(Ⅱ)求函数f(x)的单调区间、极大值和极小值;
(Ⅲ)若x∈[a+1,a+2]时,恒有f′(x)>-3a,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)=2x3-x+1,则f′(x)=(  )
A.5x-1B.5xC.6x+1D.6x2-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若连续且不恒等于的零的函数f(x)满足f′(x)=3x2-x(x∈R),试写出一个符合题意的函数f(x)=______

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的单调递减区间是(     ).
A.(,+∞)B.(-∞,C.(0,D.(e,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知可导函数为定义域上的奇函数,时,有,则的取值范围为(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案