精英家教网 > 高中数学 > 题目详情

正方形ABCD的边长是2,E,F分别是AB和CD的中点,将正方形沿EF折成直二面角(如图所示).M为矩形AEFD内一点,如果∠MBE=∠MBC,MB和平面BCF所成角的正切值为数学公式,那么点M到直线EF的距离为________.


分析:如图,先过点M作MH⊥EF,连接BH,由∠MBE=∠MBC,得出H在∠EBC的角平分线上,即∠EBH=45°,再利用直角三角形MBH中,MH=BH×tan∠MBH即可求得点M到直线EF的距离.
解答:解:如图,过点M作MH⊥EF,连接BH,
∵∠MBE=∠MBC,
∴H在∠EBC的角平分线上,即∠EBH=45°,
∴BH=
在直角三角形MBH中,
由于MB和平面BCF所成角的正切值为,∴tan∠MBH=
∴MH=BH×tan∠MBH==
那么点M到直线EF的距离为
故答案为:
点评:本题考查的点是直线与平面所成的角、点、线、面间的距离计算,其中利用∠MBE=∠MBC,得出H在∠EBC的角平分线上,求出点H在平面BCF上射影的位置是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正方形ABCD的边长为2,E为CD的中点,则
AE
BD
=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形ABCD的边长为1,正方形ADEF所在平面与平面ABCD互相垂直,G,H是DF,FC的中点.
(1)求证:GH∥平面CDE;
(2)求证:BC⊥平面CDE;
(3)求三棱锥G-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

正方形ABCD的边长为4,中心为M,球O与正方形ABCD所在的平面相切于M点,过点M的球的直径另一端点为N,线段NA与球O的球面的交点为E,且E恰为线段NA的中点,则球O的体积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方形ABCD的边长是4,对角线AC与BD交于O.将正方形ABCD沿对角线BD折成60°的二面角,并给出下面结论:①AC⊥BD;②AD⊥CO;③△AOC为正三角形;④cos∠ADC=
3
4
,则其中的真命题是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•徐州模拟)已知中心为O的正方形ABCD的边长为2,点M,N分别为线段BC,CD上的两个不同点,且|
MN
|=1,则
OM
ON
的取值范围是
[2-
2
,1]
[2-
2
,1]

查看答案和解析>>

同步练习册答案