精英家教网 > 高中数学 > 题目详情
14.定义一个对应法则f:P(m,n)→P'($\sqrt{m}$,$\sqrt{n$)(m≥0,n≥0),比如P(2,4)→P'($\sqrt{2}$,2),已知点A(2,6)和点B(6,2),M是线段AB上的动点,点M在法则f下的对应点为M',当M在线段AB上运动时,点M'的轨迹为(  )
A.线段B.圆的一部分C.椭圆的一部分D.抛物线的一部分

分析 根据所给的两个点的坐标写出直线的方程,设出两个点的坐标,根据所给的对应法则得到两个点坐标之间的关系,代入直线的方程得到轨迹方程.

解答 解:由题意知点A(6,2)和点B(2,6),AB的方程为:y-6=-(x-2),即x+y-8=0
设M′(x,y),则M(x2,y2),当M在线段AB上运动时,
从而有y2+x2-8=0,x∈[2,6],y∈[2,6],轨迹方程是圆的一部分.
故选:B.

点评 本题以定义的一种新的变换为入手点,主要考查直线与圆的有关知识,解答本题的关键是弄懂定义的本质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=lnx-x2+x,g(x)=(m-1)x2+2mx-1
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)若不等式f(x)≤g(x)恒成立,求整数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.19、如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=PC=1,$PB=PD=\sqrt{2}$,E为线段PD上一点,且PE=2ED.
(Ⅰ)若F为PE的中点,证明:BF∥平面ACE;
(Ⅱ)求点P到平面ACE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知复数z满足(1+i)•z=2-i(其中i为虚数单位),则|z|=(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{10}}}{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.sin40°sin10°+cos40°sin80°=(  )
A.$\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.cos50°D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=|2x-4|.
(1)解不等式f(x)+f(1-x)≤10;
(2)若a+b=4,证明:f(a2)+f(b2)≥8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,三棱柱ABC-A1B1C1中,侧棱AA1与底面垂直,∠ACB=90°,AC=BC,AA1=AB=2,E,F分别是A1C,AB1的中点.
(Ⅰ)证明:EF∥平面ABC
(Ⅱ)求三棱锥E-B1FC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥平面ABC,△ABC为等腰直角三角形,∠BAC=90°,E,F分别是CC1,BC的中点,且AB=AA1
(Ⅰ)求证:B1F⊥平面AEF;
(Ⅱ)若AB=2,求点A1到平面AEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,四棱锥P-ABCD中,PC=AD=CD=$\frac{1}{2}$AB=2,AB∥CD,AD⊥CD,PC⊥
面ABCD.
(1)求证:面PBC⊥面PAC;
(2)若M,N分别为PA,PB的中点,求三棱锥A-CMN的体积.

查看答案和解析>>

同步练习册答案