分析 (Ⅰ)求出函数的导数,解关于导函数的方程,求出函数的单调区间,从而求出函数的极值即可;
(Ⅱ)设F(x)=f(x)-g(x),求出函数的导数,通过讨论m的范围,求出函数的单调区间,求出函数的最大值,从而求出m的最小值即可.
解答 解:(Ⅰ)$f'(x)=\frac{1}{x}-2x+1=\frac{{-2{x^2}+x+1}}{x}=\frac{-(x-1)(2x+1)}{x}(x>0)$
由f'(x)=0解得x=1,
x,f′(x),f(x)的变化如下表:
| x | (0,1) | 1 | (1,+∞) |
| f’(x) | + | 0 | - |
| f(x) | ↗ | 极大值 | ↘ |
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,4] | B. | [0,3] | C. | [3,4] | D. | [1,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | $2\sqrt{3}$ | D. | $3\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow a∥\overrightarrow b$ | B. | $\overrightarrow a⊥\overrightarrow b$ | C. | $\overrightarrow a$与$\overrightarrow b$的夹角为60° | D. | $\overrightarrow a$与$\overrightarrow b$的夹角为30° |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 线段 | B. | 圆的一部分 | C. | 椭圆的一部分 | D. | 抛物线的一部分 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com