精英家教网 > 高中数学 > 题目详情
19.设变量x,y满足约束条件:$\left\{\begin{array}{l}{x-y≤0}\\{x+2y≤3}\\{4x-y≥-6}\end{array}\right.$,则z=|x-2y+1|的取值范围为(  )
A.[0,4]B.[0,3]C.[3,4]D.[1,3]

分析 由约束条件作出可行域,在平面直角坐标系中画出直线x-2y+1=0,由图可知,当x-2y+1≥0时,当直线平移至B函数t=x-2y+1有最小值-4;当x-2y+1<0时,当直线平移至A函数t=x-2y+1有最大值3,取绝对值后再取并集得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x-y≤0}\\{x+2y≤3}\\{4x-y≥-6}\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{4x-y=-6}\\{x-y=0}\end{array}\right.$,解得A(-2,-2),
联立$\left\{\begin{array}{l}{4x-y=-6}\\{x+2y=3}\end{array}\right.$,解得B(-1,2),
作出直线x-2y+1=0如图,
由图可知,当x-2y+1≥0时,当直线平移至B函数t=x-2y+1有最小值-4;
当x-2y+1<0时,当直线平移至A函数t=x-2y+1有最大值3.
∴z=|x-2y+1|的取值范围为[0,4].
故选:A.

点评 本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.定义:$|{\begin{array}{l}a&b\\ c&d\end{array}}|=ad-bc$,如$|{\begin{array}{l}1&2\\ 3&4\end{array}}|=1×4-2×3=-2$,则$|{\begin{array}{l}{\int_1^2{xdx}}&3\\ 1&2\end{array}}|$=(  )
A.0B.$\frac{3}{2}$C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若a和b是计算机在区间(0,3)上产生的随机数,那么函数f(x)=lg(ax2+4x+4b) 的值域为R的概率为$\frac{1+2ln3}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知复数zi=($\frac{i+1}{i-1}$)2016(i为虚数单位),则z=(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在等差数列{an}中,前n项和为Sn,且S2011=-2011,a1012=3,则S2017等于(  )
A.1009B.-2017C.2017D.-1009

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=lnx-x2+x,g(x)=(m-1)x2+2mx-1
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)若不等式f(x)≤g(x)恒成立,求整数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在区间[0,1]上随机取两个数x和y,则$y≥|{x-\frac{1}{2}}|$的概率为(  )
A.$\frac{1}{6}$B.$\frac{2}{5}$C.$\frac{3}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数$f(x)=\left\{\begin{array}{l}2-{log_2}(-x+2),0≤x<2\\ 2-f(-x),-2<x<0\end{array}\right.$则f(x)≤2的解集为{x|-2<x≤1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.sin40°sin10°+cos40°sin80°=(  )
A.$\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.cos50°D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案