精英家教网 > 高中数学 > 题目详情
12.如图是某四棱锥的三视图,则该棱锥的体积是 (  )
A.48B.24$\sqrt{3}$C.16D.8$\sqrt{3}$

分析 一个底面是矩形的四棱锥,矩形的长和宽分别是6,2,底面上的高与底面交于底面一条边的中点,四棱锥的高是2$\sqrt{3}$,即可求解.

解答 解:由三视图知,这是一个底面是矩形的四棱锥,
矩形的长和宽分别是6,2
底面上的高与底面交于底面一条边的中点,
四棱锥的高是$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$,
∴四棱锥的体积为:$\frac{1}{3}$×2×6×2$\sqrt{3}$=8$\sqrt{3}$.
故选:D

点评 本题考查由三视图求几何体的体积,考查由三视图还原几何体的直观图,考查平面图形体积的求法,本题是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.将x=2输入以下程序框图(如图),得结果为(  )
A.3B.5C.8D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.方程$\frac{x^2}{4+m}+\frac{y^2}{2-m}=1$表示椭圆的必要不充分条件是(  )
A.m∈(-1,2)B.m∈(-4,2)C.m∈(-4,-1)∪(-1,2)D.m∈(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某理科考生参加自主招生面试,从7道题中(4道理科题3道文科题)不放回地依次任取3道作答.
(1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率;
(2)规定理科考生需作答两道理科题和一道文科题,该考生答对理科题的概率均为$\frac{2}{3}$,答对文科题的概率均为$\frac{1}{4}$,若每题答对得10分,否则得零分.现该生已抽到三道题(两理一文),求其所得总分X的分布列与数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.平面上有k个圆,每两个圆都交于两点,且无三个圆交于一点,设k个圆把平面分成f(k)个区域,那么k+1个圆把平面分成f(k)+2k个区域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=(x-t)lnx-1(t∈R,t为常数),已知f(x)在x=1处的切线平行于x轴.
(Ⅰ)求常数t的值;
(Ⅱ)(i)证明函数f(x)恰有两个零点x1<x2
(ii)设g(x)=f(x)+lnx+1,是否存在最小的正常数m,使得:当a>m时,对于任意正实数x,不等式g(x+a)<g(a)ex恒成立?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,在平面四边形ABCD中,$\overrightarrow{DA}•\overrightarrow{AB}=0,|{\overrightarrow{EC}}|=\sqrt{7},|{\overrightarrow{AD}}|=3,\overrightarrow{AE}=2\overrightarrow{ED}$,$\overrightarrow{DA}$与$\overrightarrow{DC}$的夹角为$\frac{2}{3}π$,$\overrightarrow{EC}$与$\overrightarrow{EB}$的夹角为$\frac{π}{3}$.
(1)求△CDE的面积S;
(2)求$|{\overrightarrow{BE}}|$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.复数z=$\frac{1-i}{1+i}$,则z2的虚部是(  )
A.1B.-1C.iD.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=x+$\frac{1}{x-1}$(x>1)的最小值是3;此时x=2.

查看答案和解析>>

同步练习册答案