精英家教网 > 高中数学 > 题目详情
设a>0,b>0.若2a•2b=2,则
1
a
+
1
b
的最小值为(  )
A、8
B、4
C、1
D、
1
4
考点:基本不等式,有理数指数幂的化简求值
专题:不等式的解法及应用
分析:首先将已知等式化简,得到a+b=1,再所求乘以a+b,展开,利用基本不等式求最小值.
解答: 解:因为2a•2b=2,所以2a+b=21,所以a+b=1,
因为a>0,b>0.则
1
a
+
1
b
=(a+b)(
1
a
+
1
b
)=2+
b
a
+
a
b
≥2+2=4,当且仅当
b
a
=
a
b
即a=b=
1
2
时等号成立;
故选B.
点评:本题考查了运用基本不等式求代数式的最小值;关键是1的巧用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以椭圆
x2
4
+
y2
3
=1的左焦点为圆心,长轴长为半径的圆的标准方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=x+
a
x
(a>0)在(0 , 
a
]
上是减函数,在[
a
 , +∞)
上是增函数.若f(x)=x+
4
x
定义域为[1,m],值域为[4,5],则m的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式ax2+bx+2>0的解集是{x|-
1
2
<x<
1
3
}
,则a-b的值为(  )
A、14B、-14
C、10D、-10

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,一货轮航行到M处,测得灯塔S在货轮的北偏东15°,与灯塔S相距20海里,随后货轮按北偏西30°的方向航行30分钟到达N处后,又测得灯塔在货轮的东北方向,则货轮的速度为
 
海里/时.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,
sinA+sinB
sin(A+B)
=
2
sinA-sinC
sinA-sinB

(1)求角B;
(2)若tanA=
4
3
,求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=loga(2x-1)+1(a>0,且a≠1)的图象必过定点
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x≥-2
x>-3
的负整数解是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x∈Z|log6(x+4)≤1},B={x∈Z|ax2+4=0}.
(Ⅰ)若a=-1,求证:B⊆A;
(Ⅱ)若∁RA?B,求实数a的所有取值构成的集合.

查看答案和解析>>

同步练习册答案