·ÖÎö £¨1£©ÉèÔ²ÐÄCµÄ×ø±êÊÇ£¨a£¬b£©£¬¸ù¾ÝÖ±ÏßÓë¡ÑCÏàÇеÄÌõ¼þ¡¢ÇÐÏßµÄÐÔÖÊÁгö·½³Ì×飬Çó³öa¡¢bµÄÖµºÍ°ë¾¶£¬´úÈëÔ²µÄ±ê×¼·½³Ì¿ÉÇó³ö¡ÑCµÄ·½³Ì£»
£¨2£©¸ù¾ÝÖ±ÏßLµÄбÂÊ´æÔÚÎÊÌâ·ÖÀàÌÖÂÛ£ºÖ±ÏßLµÄбÂʲ»´æÔÚÖ±½ÓÇó³öM¡¢NµÄ×ø±ê£¬ÓÉÌõ¼þºÍÏòÁ¿ÏàµÈÇó³öPµÄ×ø±êºÍ|$\overrightarrow{PD}$|£»µ±Ö±ÏßLµÄбÂÊ´æÔÚʱÉè·½³ÌÊÇy=kx+4£¬ÁªÁ¢Ô²µÄ·½³ÌÇó³öM¡¢NµÄºá×ø±ê£¬²¢ÀûÓá÷£¾0Çó³ökµÄ·¶Î§£¬ÓÉÌõ¼þºÍÏòÁ¿ÏàµÈÁгö·½³Ì×飬Çó³ö¦ËºÍa-4µÄÖµ£¬±íʾ³ö|$\overrightarrow{PD}$|»¯¼òºó£¬ÀûÓû»Ôª·¨ºÍ¶þ´Îº¯ÊýµÄÐÔÖÊ£¬½áºÏkµÄ·¶Î§Çó³ö|$\overrightarrow{PD}$|µÄȡֵ·¶Î§£®
½â´ð ½â£º£¨1£©ÉèÔ²ÐÄCµÄ×ø±êÊÇ£¨a£¬b£©£¬
¡ß¡ÑCÓëÖ±Ïß-x+$\sqrt{3}$y=4ÏàÇÐÓÚµãA£¨-1£¬$\sqrt{3}$£©£¬ÇÒ¾¹ýB£¨2£¬0£©£¬
¡à$\left\{\begin{array}{l}{\frac{|-a+\sqrt{3}b-4|}{\sqrt{1+£¨\sqrt{3}£©^{2}}}=\sqrt{£¨a-2£©^{2}+{b}^{2}}}\\{\frac{b-\sqrt{3}}{a+1}=-\sqrt{3}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{a=0}\\{b=0}\end{array}\right.$£¬ÔòC£¨0£¬0£©£¬
Ôò¡ÑCµÄ°ë¾¶ÊÇ|CB|=2£¬¡à¡ÑCµÄ·½³ÌÊÇx2+y2=4£»
£¨2£©¢Ùµ±Ö±ÏßLµÄбÂʲ»´æÔÚʱ£¬Ö±ÏßLµÄ·½³ÌÊÇx=0£¬
µ±M£¨0£¬2£©£¬N£¨0£¬-2£©Ê±£¬ÉèP£¨0£¬a£©£¬
¡ß$\overrightarrow{MD}$=¦Ë$\overrightarrow{DN}$£¬$\overrightarrow{MP}$=-¦Ë$\overrightarrow{PN}$£¬
¡à£¨0£¬2£©=¦Ë£¨0£¬-6£©£¬ÇÒ£¨0£¬a-2£©=-¦Ë£¨0£¬-2-a£©£¬
½âµÃ¦Ë=$-\frac{1}{3}$£¬a=1£¬Ôò|PD|=3£¬
µ±N£¨0£¬2£©£¬M£¨0£¬-2£©Ê±£¬Í¬Àí¿ÉµÃ¦Ë=-3£¬a=1£¬|PD|=|$\overrightarrow{PD}$|=3£¬
¢Úµ±Ö±ÏßLµÄбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßLµÄ·½³ÌÊÇy=kx+4£¬
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬P£¨a£¬ka+4£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+4}\\{{x}^{2}+{y}^{2}=4}\end{array}\right.$µÃ£¬£¨1+k2£©x2+8kx+12=0£¬
¡à¡÷=£¨8k£©2-4¡Á12¡Á£¨1+k2£©=16£¨k2-3£©£¾0£¬½âµÃ$k£¾\sqrt{3}»òk£¼-\sqrt{3}$£¬
Éèx1=$\frac{-4k+2\sqrt{{k}^{2}-3}}{1+{k}^{2}}$£¬x2=$\frac{-4k-2\sqrt{{k}^{2}-3}}{1+{k}^{2}}$£¬
¡ß$\overrightarrow{MD}$=¦Ë$\overrightarrow{DN}$£¬$\overrightarrow{MP}$=-¦Ë$\overrightarrow{PN}$£¬
¡à£¨-x1£¬4-y1£©=¦Ë£¨x2£¬y2-4£©£¬ÇÒ£¨a-x1£¬ka+4-y1£©=-¦Ë£¨x2-a£¬y2-ka-4£©£¬
Ôò$\left\{\begin{array}{l}{-{x}_{1}=¦Ë{x}_{2}}\\{a-{x}_{1}=-¦Ë£¨{x}_{2}-a£©}\end{array}\right.$£¬µÃ¦Ë=$\frac{\sqrt{{k}^{2}-3}-4k}{\sqrt{{k}^{2}-3}+4k}$£¬a=$\frac{-15{k}^{2}-3}{4k£¨1+{k}^{2}£©}$£¬
¡à|PD|=|$\sqrt{1+{k}^{2}}$|a|=$\frac{3£¨5{k}^{2}+1£©}{4|k|\sqrt{1+{k}^{2}}}$£¬
Éèt=5k2+1£¬Ôò${k}^{2}=\frac{t-1}{5}$£¬
¡ß$k£¾\sqrt{3}»òk£¼-\sqrt{3}$£¬¡àt¡Ý16£¬´úÈëÉÏʽµÃ£¬
|PD|=$\frac{3}{4}•\frac{t}{\sqrt{\frac{t-1}{5}£¨1+\frac{t-1}{5}£©}}$=$\frac{3}{4}•\frac{t}{\sqrt{\frac{t-1}{5}¡Á\frac{t+4}{5}}}$
=$\frac{15}{4}•\sqrt{\frac{{t}^{2}}{{t}^{2}+3t-4}}$=$\frac{15}{4}•\sqrt{\frac{1}{1+\frac{3}{t}-\frac{4}{{t}^{2}}}}$£¬
Éèx=$\frac{1}{t}$£¬Ôò$0£¼\frac{1}{t}¡Ü\frac{1}{16}$£¬Éèy=$-\frac{4}{{t}^{2}}+\frac{3}{t}+1$£¬
Ôòy=-4x2+3x+1=$-4£¨x-\frac{3}{8}£©^{2}+\frac{25}{16}$£¬
µ±x=0ʱ£¬y=1£»µ±x=$\frac{1}{16}$ʱ£¬y=$\frac{75}{64}$£»
¡à$2\sqrt{3}¡Ü\frac{15}{4}•\sqrt{\frac{1}{1+\frac{3}{t}-\frac{4}{{t}^{2}}}}£¼\frac{15}{4}$£¬
¡à|$\overrightarrow{PD}$|µÄȡֵ·¶Î§ÊÇ$[2\sqrt{3}£¬\frac{15}{4}£©$£¬
×ÛÉϿɵã¬|$\overrightarrow{PD}$|µÄȡֵ·¶Î§ÊÇ$[2\sqrt{3}£¬\frac{15}{4}£©$»ò3£®
µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëԲλÖùØÏµ£¬Ö±ÏßÓëÏàÇеÄÌõ¼þ£¬ÏòÁ¿ÏàµÈµÄÌõ¼þ£¬ÀûÓôúÊý·¨½â¾öÖ±ÏßÓëÔ²ÏཻÎÊÌ⣬ÔËËãÁ¿´ó¶ø·±£¬¿¼²é»¯¼ò¡¢±äÐÎÄÜÁ¦£¬·ÖÎö¡¢½â¾öÎÊÌâµÄÄÜÁ¦£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | a£¼b£¼c | B£® | a£¼c£¼b | C£® | b£¼a£¼c | D£® | c£¼b£¼a |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| ³É¼¨£¨·Ö£© | 20 | 30 | 40 | 50 | 60 | 70 | 90 | 100 |
| ´ÎÊý£¨ÈË£© | 2 | 3 | 5 | x | 6 | y | 3 | 4 |
| A£® | 33 | B£® | 50 | C£® | 69 | D£® | 90 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ©Vp | B£® | p¡Äq | C£® | ©Vp¡Åq | D£® | p¡Åq |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com