精英家教网 > 高中数学 > 题目详情
4.如图,网格纸上小正方形的边长为1,粗实线画出的是某空间几何体的三视图,则该几何体的表面积为(  )
A.52B.34+9$\sqrt{2}$C.64D.34+8$\sqrt{10}$

分析 由三视图可知:该几何体为三棱台,其中AA1⊥底面ABC,AB⊥AC,AB=AC=4,AA1=4,A1B1=A1C1=2.利用梯形与三角形面积计算公式即可得出.

解答 解:由三视图可知:该几何体为三棱台,其中AA1⊥底面ABC,AB⊥AC,AB=AC=4,AA1=4,A1B1=A1C1=2.
则该几何体的表面积=$\frac{1}{2}×{2}^{2}$+$\frac{1}{2}×{4}^{2}$+$\frac{2+4}{2}×4×2$+$\frac{2\sqrt{2}+4\sqrt{2}}{2}$×$\sqrt{{4}^{2}+(2\sqrt{2}-\sqrt{2})^{2}}$
=52.
故选:A.

点评 本题考查了三棱台的三视图及其表面积计算公式、勾股定理、空间线面位置关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.某几何体的三视图如图,则几何体的表面积为6+2$\sqrt{5}$+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,网格上小正方形的边长为1,粗线画出的是某空间几何体的三视图,则该几何体的表面积为(  )
A.12+4$\sqrt{2}$+2$\sqrt{13}$B.12+8$\sqrt{2}$+2$\sqrt{13}$C.12+4$\sqrt{2}$+2$\sqrt{26}$D.12+8$\sqrt{2}$+2$\sqrt{26}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=$\left\{\begin{array}{l}|{lnx}|,({0<x≤{e^2}})\\{e^2}+2-x,({x>{e^2}})\end{array}$,存在x1<x2<x3,f(x1)=f(x2)=f(x3),则$\frac{{f({x_3})}}{{{x_1}{x_2}^2}}$的最大值为(  )
A.$\frac{1}{{2\sqrt{e}}}$B.$\frac{1}{{\sqrt{e}}}$C.$\frac{1}{e}$D.$\frac{1}{e^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某几何体的三视图如图,则该几何体的体积为(  )
A.80B.90C.100D.120

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=xlnx,g(x)═ax2-(a+1)x+1(a∈R),当a=0时,求f(x)+g(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知点A($\frac{{\sqrt{3}}}{2}$,$\frac{1}{2}$),将OA绕坐标原点O逆时针旋转$\frac{π}{2}$至OB,则点B的坐标为(  )
A.(-$\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$)B.($\frac{1}{2}$,-$\frac{{\sqrt{3}}}{2}$)C.(-$\frac{{\sqrt{3}}}{2}$,$\frac{1}{2}$)D.($\frac{{\sqrt{3}}}{2}$,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\sqrt{3}$sinxcosx-sin2x+$\frac{1}{2}$.
(1)求f(x)的最小正周期值;
(2)求f(x)的单调递增区间;
(3)求f(x)在[0,$\frac{π}{2}$]上的最值及取最值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某饮料店的日销售收入y(单位:百元)与当天平均气温x(单位:℃)之间有下列数据:
x-2-1012
y54221
甲、乙、丙三位同学对上述数据进行研究,分别得到了x与y之间的四个线性回归方程,其中正确的是(  )
A.$\stackrel{∧}{y}$=-x+2.8B.$\stackrel{∧}{y}$=-x+3C.$\stackrel{∧}{y}$=-1.2x+2.6D.$\stackrel{∧}{y}$=2x+2.7

查看答案和解析>>

同步练习册答案