精英家教网 > 高中数学 > 题目详情

【题目】已知函数 .

(1)求过点的切线方程;

(2)当时,求函数的最大值;

(3)证明:当时,不等式对任意均成立(其中为自然对数的底数, ).

【答案】(1),(2)当时, 的最大值为

时, 的最大值为;(3)见解析

【解析】试题分析:(1)设出切点坐标,表示出切线方程,代入点的坐标,求出切线方程即可;

(2)求出函数的导数,求出函数的单调区间,求出F(x)的最大值即可;

(3)问题可化为m>(x2ex+lnx﹣x,设,要证m﹣3时mh(x)对任意均成立,只要证hxmax﹣3,根据函数的单调性证明即可.

试题解析:

解:(1)设切点坐标为,则切线方程为

代入上式,得

∴切线方程为

(2)当时,

时, ,当时,

递增,在递减,

∴当时, 的最大值为

时, 的最大值为

3可化为

,要证对任意均成立,只要证下证此结论成立.

,∴当时,

,则递增,

又∵在区间上的图象是一条不间断的曲线,

使得,即

时, ;当时,

∴函数递增,在递减,

递增,∴,即

∴当时,不等式对任意均成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】执行如图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为( )

A.5
B.4
C.3
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左焦点和上顶点在直线上, 为椭圆上位于轴上方的一点且轴, 为椭圆上不同于的两点,且

(1)求椭圆的标准方程;

(2)设直线轴交于点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为

1)求曲线的普通方程和直线的倾斜角;

2)设点,直线和曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了对新研发的一批产品进行合理定价,将产品按事先拟定的价格进行试销,得到一组销售数据,如表所示:

已知

(1)求的值

(2)已知变量具有线性相关性,求产品销量关于试销单价的线性回归方程 可供选择的数据

(3)用表示(2)中所求的线性回归方程得到的与对应的产品销量的估计值。当销售数据对应的残差的绝对值时,则将销售数据称为一个“好数据”。试求这6组销售数据中的 “好数据”。

参考数据:线性回归方程中的最小二乘估计分别是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴上,离心率.以两个焦点和短轴的两个端点为顶点的四边形的周长为8,面积为

(Ⅰ)求椭圆的方程;

(Ⅱ)若点为椭圆上一点,直线的方程为,求证:直线与椭圆有且只有一个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,三个函数的定义域均为集合.

(1)若恒成立,满足条件的实数组成的集合为,试判断集合的关系,并说明理由;

(2)记,是否存在,使得对任意的实数,函数有且仅有两个零点?若存在,求出满足条件的最小正整数;若不存在,说明理由.(以下数据供参考:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】韩国民意调查机构“盖洛普韩国”2016年11月公布的民调结果显示,受“闺蜜门”时间影响,韩国总统朴槿惠的民意支持率持续下跌,在所调查的1000个对象中,年龄在[20,30)的群体有200人,支持率为0%,年龄在[30,40)和[40,50)的群体中,支持率均为3%;年龄在[50,60)和[60,70)的群体中,支持率分别为6%和13%,若在调查的对象中,除[20,30)的群体外,其余各年龄层的人数分布情况如频率分布直方图所示,其中最后三组的频数构成公差为100的等差数列.

(1)依频率分布直方图求出图中各年龄层的人数

(2)请依上述支持率完成下表:

年龄分布

是否支持

[30,40)和[40,50)

[50,60)和[60,70)

合计

支持

不支持

合计

根据表中的数据,能否在犯错误的概率不超过0.001的前提下认为年龄与支持率有关?

附表:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.076

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中 参考数据:125×33=15×275,125×97=25×485)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆轴负半轴相交于点,与轴正半轴相交于点.

1)若过点的直线被圆截得的弦长为,求直线的方程;

2)若在以为圆心半径为的圆上存在点,使得 (为坐标原点),求的取值范围;

3)设是圆上的两个动点,点关于原点的对称点为,点关于轴的对称点为,如果直线轴分别交于,问是否为定值?若是求出该定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案