精英家教网 > 高中数学 > 题目详情
在直角坐标平面内,动点M(x,y)在y轴的左侧,且点M到定点F(-1,0)的距离与到y轴的距离之差为1.
(1)求动点M的轨迹C的方程;
(2)若过点P(-3,-2)的直线l与曲线C交于A、B两点,且点P恰好是AB的中点,求线段AB的长度.
考点:轨迹方程
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)根据动点M(x,y)在y轴的左侧,且点M到定点F(-1,0)的距离与到y轴的距离之差为1,建立方程,化简可求动点M的轨迹C的方程;
(2)利用点差法求出直线AB的斜率,可得AB的方程美誉抛物线方程联立,结合抛物线的定义,可求线段AB的长度.
解答: 解:(1)依题意有:
(x+1)2+y2
-(-x)=1
…(2分)
(x+1)2+y2
=1-x
,平方化简得:y2=-4x
∴M点的轨迹方程为y2=-4x(x<0)…(4分)
(2)设A(x1,y1),B(x2,y2),
y12=-4x1y22=-4x2⇒(y1+y2)(y1-y2)=-4(x1-x2),
kAB=
y1-y2
x1-x2
=
-4
-4
=1

∴lAB:y+2=(x+3)即y=x+1…(8分)
y2=-4x
y=x+1
x2+2x+1=-4x⇒x2+6x+1=0

∴x1+x2=-6,∴|AB|=(1-x1)+(1-x2)=8
即线段AB的长度为8                                         …(12分)
点评:本题考查轨迹方程,考查直线与抛物线的位置关系,考查点差法的运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知α是第四象限的角,且sinα•cosα=-
12
25
,则sinα-cosα=(  )
A、-
49
25
B、
49
25
C、
7
5
D、-
7
5

查看答案和解析>>

科目:高中数学 来源: 题型:

证明不等式ex>x+1>lnx,x>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的首项a1=1,公差d≠0,等比数列{bn}满足a1=b1,a2=b2,a5=b3
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设数列{cn}对任意n∈N*均有
c1
b1
+
c2
b2
+…+
cn
bn
=an+1,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如表.
月收入(单位百元) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75)
频数 5 10 15 10 5 5
赞成人数 4 8 12 5 2 1
(1)由以上统计数据求下面2乘2列联表中的b,c的值,并问是否有99%的把握认为“月收入以55百元为分界点对“楼市限购令”的态度有差异;
月收入低于55百元的人数 月收入不低于55百元的人数 合计
赞成 a=29       b 32
不赞成        c       d=7
合计  50
(2)若对在[15,25),[25,35)的被调查中各随机选取一人进行追踪调查,记选中的2人中不赞成“楼市限购令”人数为ξ,求随机变量ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求经过点A(3,2),B(-2,0)的直线方程.
(2)求过点P(-1,3),并且在两轴上的截距相等的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知直角梯形ABCD,AD⊥AB,AB=2AD=2CD,过点C作CE⊥AB于E,G为CE的中点,建立适当的坐标系,用向量的坐标表示法证明:
(1)DE∥BC;
(2)D,G,B三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinθ=
4
5
,θ是第二象限角.
(1)求sin2θ;  
(2)求cos(θ-45°).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1-2x,等比数列{an}的前n项和为Sn,f(x)的图象经过点(n,Sn),则an=
 

查看答案和解析>>

同步练习册答案