精英家教网 > 高中数学 > 题目详情
证明不等式ex>x+1>lnx,x>0.
考点:导数在最大值、最小值问题中的应用
专题:导数的综合应用
分析:构造函数f(x)=ex-x-1,x>0及g(x)=x+1-lnx,x>0,利用导数判断函数的单调性,求得f(x)及g(x)的最小值即得,f(x)>f(0)=0,g(x)≥g(1)>0,不等式即可得证.
解答: 证明:①令f(x)=ex-x-1,x>0,
则f′(x)=ex-1>0,∴f(x)在(0,+∞)上单调递增.
∴对任意x∈(0,+∞),有f(x)>f(0),
而f(0)=e0-0-1=0,∴f(x)>0,
即ex>x+1.
②令g(x)=x+1-lnx,x>0,
g′(x)=1-
1
x
=
x-1
x

令g′(x)=0,得x=1,
当x变化时,g'(x),g(x)的变化情况如下表:
x (0,1) 1 (1,+∞)
g′(x)
-

0

+
g(x)
2

∴g(x)min=g(1)=2,即对任意x∈(0,+∞)有 g(x)≥g(1)>0,
∴x+1>lnx.
综上当x>0时,有ex>x+1>lnx.
点评:本题主要考查利用导数证明不等式成立的知识,通过构造函数法把问题转化为求函数的最值问题解决,体会转化划归思想的运用,属难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题中,正确命题的个数是(  )
(1)若x,y∈C,则x+yi=1+i的充要条件是x=y=1
(2)若a,b∈R且a>b,则a+i>b+i
(3)若x2+y2=0,x,y∈C,则x=y=0.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-ax2+4
,且x=2是函数f(x)的一个极小值点.
(Ⅰ)求实数a的值;
(Ⅱ)求f(x)在区间[-1,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=6,an+1+an=3•2n+1,n∈N*
(Ⅰ)设bn=an-2n+1,证明:数列{bn}是等比数列;
(Ⅱ)在数列{an}中,是否存在连续三项成等差数列?若存在,求出所有符合条件的项;若不存在,请说明理由;
(Ⅲ)若1<r<s且r,s∈N*,求证:使得a1,ar,as成等差数列的点列(r,s)在某一条直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高三年级一次数学考试之后,为了解学生的数学学习情况,随机抽取n名学生的数学成绩,制成如表所示的频率分布表.
  组号 分组频数 频率
 第一组[90,100)  5 0.05
 第二组[100,110)  a0.35
 第三组[110,120) 30 0.30
 第四组[120,130) 20  b
 第五组[130,140) 10 0.10
合 计 n 1.00
(1)求a,b,n的值;
(2)若从第三,四,五组中用分层抽样方法抽取6名学生,并在这6名学生中随机抽取2名与张老师面谈,求第三组中至少有1名学生与张老师面谈的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,公差为d.已知S2,S3+1,S4成等差数列.
(Ⅰ)求d的值;
(Ⅱ)若a1,a2,a5成等比数列,求
an-2
Sn
(n∈N*)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn=n2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1
(1)求数列{an}和{bn}的通项公式;
(2)设cn=
1
anan+1
,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标平面内,动点M(x,y)在y轴的左侧,且点M到定点F(-1,0)的距离与到y轴的距离之差为1.
(1)求动点M的轨迹C的方程;
(2)若过点P(-3,-2)的直线l与曲线C交于A、B两点,且点P恰好是AB的中点,求线段AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=ax2+bx+c的图象与两坐标轴的交点分别为(-1,0)和(0,-1),且顶点在y轴的右侧,则实数b的取值范围为
 

查看答案和解析>>

同步练习册答案