精英家教网 > 高中数学 > 题目详情
2.某地一天从6-14时的温度变化满足y=10sin($\frac{π}{8}$t+$\frac{3π}{4}$)+20,t∈[6,14],则最高气温和最低气温分别是(  )
A.10,-10B.20,-20C.30,20D.30,10

分析 通过三角函数的解析式求出函数的最值,即可得到结果.

解答 解:由题意可知:t∈[6,14],
可知$\frac{π}{8}$t+$\frac{3π}{4}$∈[$\frac{3π}{2}$,$\frac{5π}{2}$].
10sin($\frac{π}{8}$t+$\frac{3π}{4}$)+20∈[10,30].
最高气温和最低气温分别是30,10.
故选:D.

点评 本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,熟练应用函数的最值求A与b是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.某省气象部门为了有效缓解近期的持续高温天气,拟进行人工降雨,为了达到理想效果,首先在电脑上进行人工降雨模拟试验,准备用A,B,C三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,其试验数据统计如下:
方式实施地点大雨中雨小雨模拟试验总次数
A4次6次2次12次
B3次6次3次12次
C2次2次8次12次
假设甲、乙、丙三地实施的人工降雨彼此互不影响.
(Ⅰ)求甲、乙两地恰为中雨且丙为小雨的概率;
(Ⅱ)考虑到旱情和水土流失,如果甲恰需中雨即能达到理想状态,乙必须是大雨才能达到理想状态,丙是小雨或中雨就能达到理想状态,求降雨量达到理想状态的地方个数的概率分布与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.以x轴正半轴为极轴建立极坐标系.已知射线l:θ=$\frac{π}{4}$与曲线C:$\left\{\begin{array}{l}{x=t+1}\\{y=(t-1)^{2}}\end{array}\right.$(t为参数)相交于A,B两点.
(1)写出射线l的直角坐标方程和曲线C的普通方程;
(2)求线段AB的中点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成两幅不完整的统计图:

(1)求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;
(2)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=2aex+1,g(x)=lnx-lna+1-ln2,其中a为常数,e≈2.718,函数y=f(x)的图象与坐标轴交点处的切线为l1,函数y=g(x)的图象与直线y=1交点处的切线为l2,且l1∥l2
(Ⅰ)求a的值.
(Ⅱ)若对任意的x∈[1,5],不等式x-m>$\sqrt{x}f(x)-\sqrt{x}$成立,求实数m的取值范围.
(Ⅲ)若F(x)=λx2-x+1-g(x)(λ>0)有唯一零点,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=xe-x+1
(1)求函数f(x)的单调区间;
(2)是否存在实数x,使得f(1-x)=f(x+1)?若存在,求出x的值;否则,说明理由;
(3)若存在不等实数x1、x2,使得f(x1)=f(x2),证明:f′($\frac{{x}_{1}+{x}_{2}}{2}$)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知三棱柱ABC-A1B1C1中,底面ABC是等边三角形,侧棱与底面垂直,点E,F分别为棱BB1,AC中点.
(1)证明:BF∥平面A1CE;
(2)若AA1=6,AC=4,求直线CE与平面A1EF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在三棱锥P-ABC中,底面△ABC是边长为2的等边三角形,∠PCA=90°,E,F分别为AP,AC的中点,且PA=4,$BE=\sqrt{3}$.
(Ⅰ)求证:AC⊥平面BEF;
(Ⅱ)求二面角A-BP-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.定义函数g(x)=$\left\{\begin{array}{l}{2sin\frac{7π}{2},x>0}\\{2tan\frac{25π}{4},x<0}\end{array}\right.$,设f(x)=[g(2-x)•f1(x)]•[g(x-3)•f2(x)],x∈[0,2],其中f1(x)=x+m,f2(x)=1-x,若f(x)-20≤g(x)恒成立,则实数m的取值范围为[-$\frac{9}{2}$,$\frac{5}{2}$].

查看答案和解析>>

同步练习册答案