分析 (1)求导数,利用函数f(x)分别在x=-1和x=1处取得极小值和极大值,-1,1是bx2+2(1-ab)x-2a=0的两个根,即可得出结论;
(2)先由f′(x)>0,再根据函数f(x)在[-1,1]上为单调函数,将原问题转化为x2+2(1-a)x-2a≤0在[-1,1]恒成立问题,列出关于a的不等关系解之即得.
解答 解:(1)∵f(x)=(x2-2ax)ebx,
∴f'(x)=ebx[bx2+2(1-ab)x-2a],
∵函数f(x)分别在x=-1和x=1处取得极小值和极大值,
∴-1,1是bx2+2(1-ab)x-2a=0的两个根,
∴$\left\{\begin{array}{l}{-1+1=-\frac{2-2ab}{b}}\\{(-1)•1=-\frac{2a}{b}}\end{array}\right.$,∴$\left\{\begin{array}{l}{a=\frac{\sqrt{2}}{2}}\\{b=\sqrt{2}}\end{array}\right.$或$\left\{\begin{array}{l}{a=-\frac{\sqrt{2}}{2}}\\{b=-\sqrt{2}}\end{array}\right.$,
经检验,$\left\{\begin{array}{l}{a=-\frac{\sqrt{2}}{2}}\\{b=-\sqrt{2}}\end{array}\right.$;
(2)f'(x)=ex[x2+2(1-a)x-2a]
①若f(x)在[-1,1]递减,则f'(x)≤0在[-1,1]恒成立,
∴只需x2+2(1-a)x-2a≤0在[-1,1]恒成立,
即2a(x+1)≥x2+2x在[-1,1]恒成立,
x=-1时2a(x+1)≥x2+2x在[-1,1]恒成立;
x∈(-1,1]时,需满足a≥$\frac{{x}^{2}+2x}{2(x+1)}$,令g(x)=$\frac{{x}^{2}+2x}{2(x+1)}$,
则g′(x)=$\frac{{x}^{2}+2x+2}{2(x+1)^{2}}$>0在x∈(-1,1]恒成立,
∴g(x)在(-1,1]递增,∴g(x)max=g(1)=$\frac{3}{4}$,∴a≥$\frac{3}{4}$;
②若f(x)在[-1,1]递增,则f'(x)≥0在[-1,1]恒成立,
但f'(-1)=-1,∴f(x)在[-1,1]不递增;
综上a≥$\frac{3}{4}$.
点评 本小题主要考查函数单调性的应用、利用导数研究函数的单调性、不等式的解法等基础知识,考查运算求解能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 6 | C. | 12 | D. | 13 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | 1 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 7 | C. | 6 | D. | 9 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com