精英家教网 > 高中数学 > 题目详情

设函数f(x)=cos2ωx+sinωxcosωx+a(其中ω>0,a∈R),且f(x)的图象在y轴右侧的第一个最高点的横坐标为.
(1)求ω的值;
(2)如果f(x)在区间上的最小值为,求a的值.

(1)ω=.(2) a=.

解析试题分析:(1)f(x)=cos2ωx+sin2ωx++a
=sin+a.
依题意得2ω·,解得ω=.
(2)由(1)知,f(x)=sin+a.
又当x∈时,x+
≤sin≤1,
从而f(x)在上取得最小值+a.
由题设知+a=,故a=.
考点:和差倍半的三角函数,三角函数的图象和性质。
点评:中档题,本题较为典型,即首先利用和差倍半的三角函数公式,将三角函数式“化一”,进一步研究函数的图像和性质。本题(2)给定了自变量的较小范围,应注意确定的范围,进一步确定函数的最值。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在锐角中,.
(Ⅰ)求角的大小;
(Ⅱ)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,函数的最大值为
(Ⅰ)求
(Ⅱ)将函数的图像向左平移个单位,再将所得图像上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图像,求上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量向量与向量的夹角为,且.
(1)求向量 ;  
(2)若向量共线,向量,其中的内角,且依次成等差数列,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

受日月引力的作用,海水会发生涨落,这种现象叫潮汐. 在通常情况下,船在海水涨潮时驶进航道,靠近码头,卸货后返回海洋.某港口水的深度是时间,单位:的函数,记作:,下表是该港口在某季每天水深的数据:

经过长期观察的曲线可以近似地看做函数的图象.
(Ⅰ)根据以上数据,求出函数的近似表达式;
(Ⅱ)一般情况下,船舶航行时船底离海底的距离为以上时认为是安全的(船舶停靠时,船底只需不碰到海底即可),某船吃水深度(船底离水面的距离)为,如果该船想在同一天内安全进出港,问它至多能在港内停留多长时间(忽略进出港所需时间)?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(I)求函数上的最大值与最小值;
(II)若实数使得对任意恒成立,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的最小正周期;
(Ⅱ)求函数的单调递增区间.
(Ⅲ)该函数通过怎样的图像变换得到.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)若的单调递增区间;
(2)若的最大值为4,求a的值;
(3)在(2)的条件下,求满足集合。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设向量
(I)若
(II)设函数

查看答案和解析>>

同步练习册答案