精英家教网 > 高中数学 > 题目详情
5.已知数列{an}是各项均不为零的等差数列,Sn为其前n项和,且an=$\sqrt{{S}_{2n-1}}$(n∈N*).若不等式λSn≥an-2016对任意n∈N*恒成立,则实数λ的最小值为$\frac{1}{2017}$.

分析 由已知数列递推式求得数列首项和公差,进一步求得数列通项和前n项和,代入λSn≥an-2016,分离参数λ,然后利用二次函数求得最值得答案.

解答 解:由an=$\sqrt{{S}_{2n-1}}$,得an2=S2n-1
令n=1,n=2,
得$\left\{\begin{array}{l}{{{a}_{1}}^{2}={S}_{1}}\\{{{a}_{2}}^{2}={S}_{3}}\end{array}\right.$,即$\left\{\begin{array}{l}{{{a}_{1}}^{2}={a}_{1}}\\{({a}_{1}+d)^{2}=3{a}_{1}+3d}\end{array}\right.$,
∵an≠0,解得a1=1,d=2,
∴an=a1+(n-1)d=1+2(n-1)=2n-1,
${S}_{n}=n×1+\frac{n(n-1)}{2}×2={n}^{2}$.
由不等式λSn≥an-2016,得λn2≥2n-1-2016=2n-2017.
∴$λ≥\frac{2n-2017}{{n}^{2}}=\frac{2}{n}-\frac{2017}{{n}^{2}}$.
由二次函数的性质可知,当$\frac{1}{n}=\frac{1}{2017}$,即n=2017时,$(\frac{2}{n}-\frac{2017}{{n}^{2}})_{max}=\frac{2}{2017}-\frac{2017}{201{7}^{2}}=\frac{1}{2017}$.
∴实数λ的最小值为$\frac{1}{2017}$.
故答案为:$\frac{1}{2017}$.

点评 本题考查数列递推式,考查了等差数列通项公式的求法,训练了二次函数最值的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=4x2+$\frac{1}{x}$-a,g(x)=f(x)+b,其中a,b为常数.
(1)若x=1是函数y=xf(x)的一个极值点,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若函数f(x)有2个零点,f(g(x))有6个零点,求a+b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow{a}$=(2,m+1),$\overrightarrow{b}$=(m+3,4),且($\overrightarrow{a}$+$\overrightarrow{b}$)∥($\overrightarrow{a}$-$\overrightarrow{b}$),则m=-5或1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知a,b是正常数,x,y∈(0,+∞),求证:$\frac{a^2}{x}$+$\frac{b^2}{y}$≥$\frac{{{{(a+b)}^2}}}{x+y}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若点P,Q分别是曲线y=$\frac{x+4}{x}$与直线4x+y=0上的动点,则线段PQ长的最小值为$\frac{7\sqrt{17}}{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x,x≤2}\\{lo{g}_{a}x-\frac{1}{2},x>2}\end{array}\right.$的值域为实数集R,则f(2$\sqrt{2}$)的取值范围是(  )
A.(-∞,-$\frac{1}{2}$)B.(-∞,-$\frac{5}{4}$)C.[-$\frac{5}{4}$,+∞)D.[-$\frac{5}{4}$,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2(a+1)lnx-ax,g(x)=$\frac{1}{2}$x2-x.
(1)若a≥0,试判断f(x)在定义域内的单调性;
(2)证明:若-1<a<7,则对任意x1,x2∈(1,+∞),且x1>x2,有$\frac{f({x}_{1})-f({x}_{2})}{g({x}_{1})-g({x}_{2})}$>-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,四棱锥P-ABCD的底面为正方形,PA⊥平面ABCD,PA=AD,点M、N分别在棱PD、PC上,且PC⊥平面AMN.
(Ⅰ)求二面角P-AM-N的余弦值;
(Ⅱ)求直线CD与平面AMN所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知P为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1上一点,F1,F2是焦点,∠F1PF2取最大值时的余弦值为$\frac{1}{3}$,则此椭圆的离心率为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

同步练习册答案