精英家教网 > 高中数学 > 题目详情
4.在△ABC中,A、B、C为它的三个内角,设向量$\overrightarrow{p}$=(cos$\frac{B}{2}$,sin$\frac{B}{2}$),$\overrightarrow{q}$=(cos$\frac{B}{2}$,-sin$\frac{B}{2}$),且$\overrightarrow{p}$与$\overrightarrow{q}$的夹角为$\frac{π}{3}$.
(1)求角B的大小;
(2)已知tanC=$\frac{\sqrt{3}}{2}$,求$\frac{sin2AcosA-sinA}{sin2Acos2A}$的值.

分析 (1)先利用向量的数量积公式求出$\overrightarrow{p}$•$\overrightarrow{q}$,利用向量模的公式求出两个向量的模,利用向量的夹角公式即可求出角B.
(2)由已知利用同角三角函数基本关系式可求sinC,cosC,进而利用两角和的余弦函数公式可求cosA的值,利用倍角公式化简所求后即可计算得解.

解答 解:(1)∵$\overrightarrow{p}$=(cos$\frac{B}{2}$,sin$\frac{B}{2}$),$\overrightarrow{q}$=(cos$\frac{B}{2}$,-sin$\frac{B}{2}$),且$\overrightarrow{p}$与$\overrightarrow{q}$的夹角为$\frac{π}{3}$,
∴|$\overrightarrow{p}$|=1,|$\overrightarrow{q}$|=1,
∴$\overrightarrow{p}$•$\overrightarrow{q}$=cos2$\frac{B}{2}$-sin2$\frac{B}{2}$=cosB,
∴cos<$\overrightarrow{p}$•$\overrightarrow{q}$>=cos$\frac{π}{3}$=$\frac{\overrightarrow{p}•\overrightarrow{q}}{|\overrightarrow{p}|•\overrightarrow{|q|}}$=cosB,
∵0<B<π,
∴B=$\frac{π}{3}$.
(2)∵tanC=$\frac{\sqrt{3}}{2}$,
∴cosC=$\sqrt{\frac{1}{1+ta{n}^{2}C}}$=$\frac{2\sqrt{7}}{7}$,sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{\sqrt{21}}{7}$,
∴cosA=-cos(B+C)=sinBsinC-cosBcosC=$\frac{\sqrt{3}}{2}×$$\frac{\sqrt{21}}{7}$-$\frac{1}{2}×$$\frac{2\sqrt{7}}{7}$=$\frac{\sqrt{7}}{14}$.
∴$\frac{sin2AcosA-sinA}{sin2Acos2A}$=$\frac{2sinAco{s}^{2}A-sinA}{2sinAcosAcos2A}$=$\frac{2co{s}^{2}A-1}{2cosAcos2A}$=$\frac{cos2A}{2cosAcos2A}$=$\frac{1}{2cosA}$=$\sqrt{7}$.

点评 本题主要考查了向量的数量积公式,向量的夹角公式,同角三角函数基本关系式,两角和的余弦函数公式,倍角公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.若a>0,b>0,且a+b=2,则$\frac{1}{a}+\frac{9}{b}$的最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若函数$f(x)=\sqrt{3}sinx-cosx$,$x∈[{-\frac{π}{2},\frac{π}{2}}]$,则函数f(x)值域为(  )
A.[-1,1]B.[-2,1]C.$[{-2,\sqrt{3}}]$D.$[{-1,\sqrt{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)右焦点且倾斜角为45°的直线与双曲线右支有两个交点,则双曲线的离心率e的取值范围是(  )
A.(1,$\frac{3}{2}$)B.(1,$\sqrt{2}$)C.($\sqrt{2}$,$\sqrt{3}$)D.($\sqrt{2}$,$\frac{3}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知m为实数,函数f(x)=$\frac{2m}{3}$x3-2m2x2+$\frac{3}{2}$x2-6mx+1
(Ⅰ)当m=1时,求f(x)过点(1,f(1))的切线方程
(Ⅱ)若曲线y=f(x)与直线y=10的图象恰有三个交点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.圆心为O(-1,3),半径为2的圆的方程为(  )
A.(x-1)2+(y+3)2=2B.(x+1)2+(y-3)2=4C.(x-1)2+(y+3)2=4D.(x+1)2+(y-3)2=2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线一焦点坐标为(5,0),一渐近线方程为3x-4y=0,则双曲线离心率为(  )
A.$\frac{25\sqrt{5}}{4}$B.$\frac{5\sqrt{7}}{2}$C.$\frac{5}{3}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知平面β的法向量是(2,3,-1),直线l的方向向量是(4,λ,-2),若l∥β,则λ的值是-$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知各项均为正数的数列{an}满足a1=1,$a_n^2-(2{a_{n+1}}-1){a_n}-2{a_{n+1}}=0$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列${b_n}=a_n^{\;}•{log_2}{a_n}$,求数列{bn}前n项和Tn

查看答案和解析>>

同步练习册答案