【题目】参加衡水中学数学选修课的同学,对某公司的一种产品销量与价格进行统计,得到如下数据和散点图:
定价(元/) | ||||||
年销售 | ||||||
(参考数据:
)
(I)根据散点图判断,与,与哪一对具有较强的线性相关性(给出判断即可,不必说明理由)?
(II)根据(I)的判断结果有数据,建立关于的回归方程(方程中的系数均保留两位有效数字);
(III)定价为多少元/时,年利润的预报值最大?
附:对一组数据,其回归直线的斜率和截距的最小二乘估计分别为:.
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和Sn=2n+1,(n∈N*).
(1)求数列{an}的通项an;
(2)设bn=nan+1 , 求数列{bn}的前n项和Tn;
(3)设cn= ,求证:c1+c2+…+cn< .(n∈N*)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: + =1(a>b>0)的离心率为 ,其中左焦点F(﹣2,0).
(1)求椭圆C的方程;
(2)若直线y=x+m与椭圆C交于不同的两点A,B,且线段的中点M在圆x2+y2=1上,求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax3+cx(a≠0,a∈R,c∈R),当x=1时,f(x)取得极值﹣2.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调区间和极大值;
(3)若对任意x1、x2∈[﹣1,1],不等式|f(x1)﹣f(x2)|≤t恒成立,求实数t的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex+2ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为﹣1.
(1)求a的值及函数f(x)的极值;
(2)证明:当x>0时,x2+1<ex .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是平行四边形, ,侧面底面, , , 分别为的中点,点在线段上.
(Ⅰ)求证: 平面;
(Ⅱ)如果直线与平面所成的角和直线与平面所成的角相等,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,圆C的方程为ρ=2acosθ(a≠0),以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为 (t为参数).
(1)求圆C的标准方程和直线l的普通方程;
(2)若直线l与圆C恒有公共点,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com