精英家教网 > 高中数学 > 题目详情
18.如图所示,矩形ABCD中,DA⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE,AC和BD交于点G.
(Ⅰ)求证:AE∥平面BFD;
(Ⅱ)求三棱锥C-BFG的体积.

分析 (1)连结FG,证明FG∥AE,然后证明AE∥平面BFD.
(2)利用VC-BGF=VG-BCF,求出S△CFB.证明FG⊥平面BCF,求出FG,即可求解几何体的体积.

解答 (1)证明:由题意可得G是AC的中点,连结FG,
∵BF⊥平面ACE,∴CE⊥BF.而BC=BE,∴F是EC的中点,…(2分)
在△AEC中,FG∥AE,∴AE∥平面BFD.…(5分)
(2)解:∵AD⊥平面ABE,AD∥BC,∴BC⊥平面ABE,则AE⊥BC.
又∵BF⊥平面ACE,则AE⊥BF,又BC∩BF=B,∴AE⊥平面BCE.…(8分)
∵AE∥FG.而AE⊥平面BCE,∴FG⊥平面BCF.∵G是AC中点,F是CE中点,
∴FG∥AE且FG=$\frac{1}{2}$AE=1.∴Rt△BCE中,BF=$\frac{1}{2}$CE=CF=$\sqrt{2}$,…(10分)
∴S△CFB=$\frac{1}{2}$×$\sqrt{2}$×$\sqrt{2}$=1.∴VC-BGF=VG-BCF=$\frac{1}{3}$•S△CFB•FG=$\frac{1}{3}$×1×1=$\frac{1}{3}$.…(12分)

点评 本题考查直线与平面平行的判定定理的应用,三角锥的体积的求法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.设曲线y=x2上任一点(x,y)处的切线的斜率为g(x),则函数h(x)=g(x)cosx 的部分图象可以为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知实数a,b,c,d满足$\frac{a-2{e}^{a}}{b}$=$\frac{1-c}{d-1}$=1其中e是自然对数的底数,则(a-c)2+(b-d)2的最小值为(  )
A.8B.10C.12D.18

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在等比数列{an}中,a1=2,S3=42,则公比q=4或-5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,角A,B,C所对的边分别为a,b,c,给出下列命题:
①若A>B>C,则sinA>sinB>sinC;
②若$\frac{sinA}{a}=\frac{sinB}{b}=\frac{sinC}{c}$,则△ABC为等边三角形;
③存在角A,B,C,使得tanAtanBtanC<tanA+tanB+tanC成立;
④若a=40,b=20,B=25°,则满足条件的△ABC有两个;
⑤若0<tanAtanB<1,则△ABC是钝角三角形.
其中正确的命题为①④⑤(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求证:$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.函数f(x)=cos($\frac{x}{3}$+a)(0<a<2π)在区间[-π,π]单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,内角A、B、C所对的边分别为a、b、c,若b=2c•cosA,则△ABC的形状一定是等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.哈三中3名同学经过层层闯关,最终获得了中国谜语大会银奖,赛后主办方为同行的一位老师、两位家长及这三名同学合影留念,六人站成一排,则这三名同学相邻且老师不站两端的排法有72种(结果用数字作答).

查看答案和解析>>

同步练习册答案