分析 利用同角三角函数的基本关系、以及三角函数在各个象限中的符号,求得cosx-sinx的值.
解答 解:因为sinx+cosx=$\frac{1}{5}$,两边平方得1+2sinxcosx=$\frac{1}{25}$,∴sinxcosx=-$\frac{12}{25}$.
∵0<x<π,∴sinx>0,cosx<0,∴cosx-sinx<0.
又 (cosx-sinx))2=1-2sinxcosx=1+$\frac{24}{25}$=$\frac{49}{25}$,∴cosx-sinx=-$\frac{7}{5}$.
点评 本题主要考查同角三角函数的基本关系、以及三角函数在各个象限中的符号,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 4$\sqrt{3}$ | B. | -4$\sqrt{3}$ | C. | $\frac{4\sqrt{3}}{3}$ | D. | -$\frac{4\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (x-1)2+(y+2)2=5 | B. | (x-1)2+(y+2)2=20 | C. | (x+1)2+(y-2)2=20 | D. | (x+1)2+(y-2)2=5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,2) | B. | (1,$\frac{2\sqrt{3}}{3}$) | C. | ($\frac{2\sqrt{3}}{3},2$) | D. | (2,$\frac{4\sqrt{3}}{3}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com