【题目】在直角坐标系中,直线l的参数方程为 t为参数).若以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为 . (Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)求直线l被曲线C所截得的弦长.
【答案】解:(1)由 得:ρ=cosθ+sinθ,两边同乘以ρ得:ρ2=ρcosθ+ρsinθ,
∴x2+y2﹣x﹣y=0,即 .
( 2 )将直线参数方程代入圆C的方程得:5t2﹣21t+20=0,
∴ .
∴
【解析】(1)曲线的极坐标方程即ρ=cosθ+sinθ,两边同乘以ρ得:ρ2=ρcosθ+ρsinθ,再根据直角坐标与极坐标的互化公式求得C的直角坐标方程.(2)将直线参数方程代入圆C的方程,利用根与系数的关系和弦长公式求得直线l被曲线C所截得的弦长.
【考点精析】根据题目的已知条件,利用直线的参数方程的相关知识可以得到问题的答案,需要掌握经过点,倾斜角为的直线的参数方程可表示为(为参数).
科目:高中数学 来源: 题型:
【题目】为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为me , 众数为mO , 平均值为 ,则( )
A.me=mO=
B.me=mO<
C.me<mO<
D.mO<me<
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年高一新生入学后,为了了解新生学业水平,某区对新生进行了水平测试,随机抽取了50名新生的成绩,其相关数据统计如下:
分数段 | 频数 | 选择题得分24分以上(含24分) |
[40,50) | 5 | 2 |
[50,60) | 10 | 4 |
[60,70) | 15 | 12 |
[70,80) | 10 | 6 |
[80,90) | 5 | 4 |
[90,100) | 5 | 5 |
(Ⅰ)若从分数在[70,80),[80,90)的被调查的新生中各随机选取2人进行追踪调查,求恰好有2名新生选择题得分不足24分的概率;
(Ⅱ)在(Ⅰ)的条件下,记选中的4名新生中选择题得分不足24分的人数为X,求随机变量X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂的A、B、C三个不同车间生产同一产品的数量(单位:件)如下表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测.
车间 | A | B | C |
数量 | 50 | 150 | 100 |
(1)求这6件样品中来自A、B、C各车间产品的数量;
(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件商品来自相同车间的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某冷饮店为了解气温变化对其营业额的影响,随机记录了该店1月份销售淡季中5天的日营业额y(单位:百元)与该地当日最低气温x(单位:℃)的数据,如下表所示:
x | 3 | 6 | 7 | 9 | 10 |
y | 12 | 10 | 8 | 8 | 7 |
(Ⅰ)判定y与x之间是正相关还是负相关,并求回归方程 = x+
(Ⅱ)若该地1月份某天的最低气温为6℃,预测该店当日的营业额
(参考公式: = = , = ﹣ ).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=lnx﹣ax+ ﹣1. (Ⅰ)当a=1时,求曲线f(x)在x=1处的切线方程;
(Ⅱ)当a= 时,求函数f(x)的单调区间;
(Ⅲ)在(Ⅱ)的条件下,设函数g(x)=x2﹣2bx﹣ ,若对于x1∈[1,2],x2∈[0,1],使f(x1)≥g(x2)成立,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=alnx+b(a,b∈R),曲线f(x)在x=1处的切线方程为x﹣y﹣1=0.
(1)求a,b的值;
(2)证明:f(x)+ ≥1;
(3)已知满足xlnx=1的常数为k.令函数g(x)=mex+f(x)(其中e是自然对数的底数,e=2.71828…),若x=x0是g(x)的极值点,且g(x)≤0恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,ABCD为正方形,过A作线段SA⊥平面ABCD,过A作与SC垂直的平面交SB,SC,SD于E,K,H,求证:E是点A在直线SB上的射影.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com