精英家教网 > 高中数学 > 题目详情
等比数列{an}中,an>0(n∈N*),a1a3=4,且a3+1是a2和a4的等差中项,若bn=log2an+1
(1)求数列{bn}的通项公式;
(2)若数列{cn}满足cn=an+1+
1
b2n-1b2n+1
,求数列{cn}的前n项和.
考点:数列的求和
专题:等差数列与等比数列
分析:(1)根据等比数列的性质求出a2,由等差中项和等比数列的通项公式求出公比q,求出an和bn
(2)由(1)和题意求出cn,利用分组求和法、裂项相消法、等比数列的前n项和公式求出数列{cn}的前n项和.
解答: 解:(1)设等比数列{an}的公比为q,且q>0,
在等比数列{an}中,由an>0、a1a2=4得,a2=2,①
又a3+1是a2和a4的等差中项,所以2(a3+1)=a2+a4,②
把①代入②得,2(2q+1)=2+2q2,解得:q=2或q=0(舍去),
所以an=a2qn-2=2n-1
则bn=log2an+1=log22n=n…(4分)
(2)由(1)得,cn=an+1+
1
b2n-1b2n+1
=2n+
1
(2n-1)(2n+1)

=2n+
1
2
(
1
2n-1
-
1
2n+1
)
,…(6分)
所以数列{cn}的前n项和Sn=2+22+…+2n+
1
2
[(1-
1
3
)+(
1
3
-
1
5
)
+…+(
1
2n-1
-
1
2n+1
)]
=
2(1-2n)
1-2
+
1
2
(1-
1
2n+1
)
=2n+1-2+
n
2n+1
  …(12)
点评:本题考查等比数列的通项公式、前n项和公式、性质,等差中项的性质,对数的运算性质,以及数列求和的常用方法:分组求和法、裂项相消法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数y=ax(a>0,a≠1)在区间x∈[0,1]上的最大值与最小值之和为3,则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
m
1+i
=1-ni,其中m,n∈R,i为虚数  单位,则m+ni=(  )
A、1+2iB、2+i
C、1-2iD、2-i

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题正确的是(  )
2cos5°-sin25°
cos25°
=
3

②已知非零向量
a
b
,若
a
b
=0,则
|
a
-2
b
|
|
a
+2
b
|
=2
(1+x+x2)(x-
1
x
)6
的展开式中的常数项为-5.
④已知(
x
+
1
x
)n
展开式中常数项是
C
4
n
,则n=12.
⑤抛掷两枚骰子,当至少有一枚4点或5点出现时,就说这次实验成功,则在30次实验中成功次数X的方差D(X)=
200
27
A、①③④B、②④⑤
C、①④⑤D、①③⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=2,a2=3,其前n项和Sn满足Sn+2+Sn=2Sn+1+1(n∈N*);数列{bn}中,b1=a1,{bn+2}是以4为公比的等比数列.
(1)求数列{an},{bn}的通项公式;
(2)设cn=bn+2+(-1)n-1λ•2an(λ为非零整数,n∈N*),试确定λ的值,使得对任意n∈N*,都有cn+1>cn成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

在R上定义运算?:x?y=x(1-y),若不等式(x-a)?(x+a)<1对任意实数x成立,则实数a的取值范围是(  )
A、{a|-1<a<1}
B、{a|0<a<2}
C、{a|-
1
2
<a<
3
2
}
D、{a|-
3
2
<a<
1
2
}

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x),g(x)分别是定义在实数集R上的奇函数、偶函数,且满足f(x)-g(x)=ex(e是自然对数的底数),则有(  )
A、f(2)<f(3)<g(0)
B、g(0)<f(3)<f(2)
C、g(0)<f(2)<f(3)
D、f(2)<g(0)<f(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(2,1)是直线l被椭圆
x2
16
+
y2
4
=1所截得的线段的中点,则直线l的方程是(  )
A、x+2y-4=0
B、x-2y=0
C、x+8y-10=0
D、x-8y+6=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)对任意的实数m,n都有:f(m+n)=f(m)+f(n)-1,且当x>0时,有f(x)>1.
(1)求f(0);
(2)求证:f(x)在R上为增函数;
(3)若f(6)=7,且关于x的不等式f(ax-2)+f(x-x2)<3对任意的x∈[-1,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案