精英家教网 > 高中数学 > 题目详情
若函数f(x),g(x)分别是定义在实数集R上的奇函数、偶函数,且满足f(x)-g(x)=ex(e是自然对数的底数),则有(  )
A、f(2)<f(3)<g(0)
B、g(0)<f(3)<f(2)
C、g(0)<f(2)<f(3)
D、f(2)<g(0)<f(3)
考点:函数奇偶性的性质
专题:综合题,函数的性质及应用
分析:根据奇函数,偶函数的定义求出f(x)=
ex-e-x
2
,g(x)=
ex+e-x
2
,利用单调性和特殊值判断大小.
解答: 解:∵函数f(x),g(x)分别是定义在实数集R上的奇函数、偶函数,
∴f(-x)=-f(x),g(-x)=g(x),
∵f(x)-g(x)=ex
∴,代入-x得出:f(x)+g(x)=-e-x
f(x)=
ex-e-x
2
,g(x)=
ex+e-x
2

∵f(x)=
ex-e-x
2
单调递增
∴g(0)=1,f(3)>f(2)=
e2-e-2
2
>1,
g(0)<f(2)<f(3),
故选:C
点评:本题考察了函数的性质,运用函数式子,单调性判断大小,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=(
1
3
x+3的值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cos2x+2
3
sinxcosx(x∈R).
(Ⅰ)当x∈[0,π]时,求函数f(x)的单调递增区间;
(Ⅱ)若方程f(x)-t=1在x∈[0,
π
2
]内恒有两个不相等的实数解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}中,an>0(n∈N*),a1a3=4,且a3+1是a2和a4的等差中项,若bn=log2an+1
(1)求数列{bn}的通项公式;
(2)若数列{cn}满足cn=an+1+
1
b2n-1b2n+1
,求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义函数f(x)={x•{x}},其中{x}表示不小于x的最小整数,如{1.5}=2,{-2.5}=-2.当x∈(0,n],n∈N*时,函数f(x)的值域为An,记集合An中元素的个数为an,则
1
a1
+
1
a2
+…+
1
an
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3+ax2+b,其中a,b∈R.
(1)若曲线y=f(x)在点(-1,f(-1))处的切线方程是3x+y+2=0,求a、b的值;
(2)若b=
9
2
,且关于x的方程f(x)=0有两个不同的正实数根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆C与圆C1:x2+(y-3)2=1和圆C2:x2+(y+3)2=9都外切,则动圆圆心C的轨迹方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若对任意x∈R,不等式
(x2+1)cosθ-x(cosθ-5)+3
x2-x+1
>sinθ-1恒成立,求θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)(a,b,c∈R),且同时满足下列条件:①f(-1)=0;②对任意实数x,都有f(x)-x≥0;③当x∈(0,2)时,有f(x)≤(
x+1
2
2
(1)求f(1);
(2)求a,b,c的值;
(3)当x∈[-1,1]时,函数g(x)=f(x)-mx(m∈R)是单调函数,求m的取值范围.

查看答案和解析>>

同步练习册答案